def test(config, test_data, save_dir, vocab_dir_txt): save_path = os.path.join(save_dir, 'best_validation') # 最佳验证结果保存路径 print(config.vocab_size) print(config.seq_length) print(config.embedding_dim) print(config.embedding_dim) words, word_to_id = read_vocab(vocab_dir_txt) config.vocab_size = len(words) tf.reset_default_graph() model = TextCNN(config) print("Loading test data...") start_time = time.time() x_test = process_test_data(test_data, word_to_id, config.seq_length) session = tf.Session() session.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess=session, save_path=save_path) # 读取保存的模型 # print('Testing...') # loss_test, acc_test = evaluate(session, x_test, y_test) # msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}' # print(msg.format(loss_test, acc_test)) batch_size = 10 data_len = len(x_test) num_batch = int((data_len - 1) / batch_size) + 1 # y_test_cls = np.argmax(y_test, 1) y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32) # 保存预测结果 for i in range(num_batch): # 逐批次处理 start_id = i * batch_size end_id = min((i + 1) * batch_size, data_len) feed_dict = { model.input_x: x_test[start_id:end_id], model.keep_prob: 1.0 } y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict) # 评估 # print("Precision, Recall and F1-Score...") # print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories)) # 混淆矩阵 # print("Confusion Matrix...") # cm = metrics.confusion_matrix(y_test_cls, y_pred_cls) # print(cm) time_dif = get_time_dif(start_time) return y_pred_cls, time_dif
def train(config, train_contents, train_labels, labels, save_dir, vocab_dir_txt): print('Configuring RNN model...') print("1") print(config) save_path = os.path.join(save_dir, 'best_validation') # 最佳验证结果保存路径 categories, cat_to_id = read_category(train_labels) words, word_to_id = read_vocab(vocab_dir_txt) tf.reset_default_graph() print("2") print(len(words)) config.vocab_size = len(words) model = TextRNN(config) print("Configuring TensorBoard and Saver...") # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖 tensorboard_dir = 'tensorboard/textrnn2' if not os.path.exists(tensorboard_dir): os.makedirs(tensorboard_dir) tf.summary.scalar("loss", model.loss) tf.summary.scalar("accuracy", model.acc) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(tensorboard_dir) # 配置 Saver saver = tf.train.Saver() if not os.path.exists(save_dir): os.makedirs(save_dir) print("Loading training and validation data...") # 载入训练集与验证集 tra_data = train_contents tra_labels = labels state = np.random.get_state() np.random.shuffle(tra_data) np.random.set_state(state) np.random.shuffle(tra_labels) sep = int(len(tra_data) / 3 * 2) start_time = time.time() tra_data, tra_labels = process_train_data(tra_data, tra_labels, word_to_id, cat_to_id, config.seq_length) x_train = tra_data[:sep] y_train = tra_labels[:sep] x_val = tra_data[sep:] y_val = tra_labels[sep:] time_dif = get_time_dif(start_time) print("Time usage:", time_dif) # 创建session session = tf.Session() session.run(tf.global_variables_initializer()) writer.add_graph(session.graph) print('Training and evaluating...') start_time = time.time() total_batch = 0 # 总批次 best_acc_val = 0.0 # 最佳验证集准确率 last_improved = 0 # 记录上一次提升批次 require_improvement = 1000 # 如果超过1000轮未提升,提前结束训练 flag = False for epoch in range(config.num_epochs): print('Epoch:', epoch + 1) batch_train = batch_iter(x_train, y_train, config.batch_size) for x_batch, y_batch in batch_train: feed_dict = feed_data(model, x_batch, y_batch, config.dropout_keep_prob) if total_batch % config.save_per_batch == 0: # 每多少轮次将训练结果写入tensorboard scalar s = session.run(merged_summary, feed_dict=feed_dict) writer.add_summary(s, total_batch) if total_batch % config.print_per_batch == 0: # 每多少轮次输出在训练集和验证集上的性能 feed_dict[model.keep_prob] = 1.0 loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict) loss_val, acc_val = evaluate(model, session, x_val, y_val) # todo if acc_val > best_acc_val: # 保存最好结果 best_acc_val = acc_val last_improved = total_batch saver.save(sess=session, save_path=save_path) improved_str = '*' else: improved_str = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \ + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}' print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str)) session.run(model.optim, feed_dict=feed_dict) # 运行优化 total_batch += 1 if total_batch - last_improved > require_improvement: # 验证集正确率长期不提升,提前结束训练 print("No optimization for a long time, auto-stopping...") flag = True break # 跳出循环 if flag: # 同上 break return loss_val, acc_val, time_dif