def clean(text: str) -> str: txt = text.strip() txt = preprocessing.normalize_unicode(txt, form="NFKC") # Collapse whitespaces txt = preprocessing.normalize_whitespace(txt) # Remove newlines txt = preprocessing.normalize_repeating_chars(txt, chars="\n", maxn=1) # fix hyphen-ated words txt = preprocessing.normalize_hyphenated_words(txt) txt = preprocessing.normalize_quotation_marks(txt) txt = preprocessing.replace_urls(txt, replace_with="") txt = preprocessing.replace_phone_numbers(txt, replace_with="") txt = preprocessing.replace_emails(txt, replace_with="") txt = preprocessing.replace_user_handles(txt, replace_with="") txt = preprocessing.normalize_repeating_chars(txt, chars=".,;:-_ ", maxn=1) txt = re.sub("\n ", " ", txt) txt = re.sub(" \n", " ", txt) txt = re.sub("\n", " ", txt) txt = re.sub(" . ", " ", txt) txt = re.sub(r"\.([A-Z])", r". \1", txt) txt = re.sub(r"\. ([A-Z])", r".\n\1", txt) # fix for some common abbreviations for abv in ['Dr', 'St', 'Mr', 'Ms', 'mt', 'Inst', 'inc', 'est']: txt = re.sub(abv + "\.\n", abv + ". ", txt) return txt
def cleanTweet(raw_data): data = [txt.replace_urls(x, "") for x in raw_data] data = [txt.replace_emails(x, "") for x in data] data = [txt.replace_emojis(x, "") for x in data] data = [txt.replace_user_handles(x, "") for x in data] data = [txt.replace_phone_numbers(x, "") for x in data] data = [txt.replace_numbers(x, "") for x in data] data = [txt.replace_currency_symbols(x, "") for x in data] data = [txt.replace_hashtags(x, "") for x in data] return data
def test_replace_user_handles(): in_outs = [ ("like omg it's @bjdewilde", "like omg it's _USER_"), ("@Real_Burton_DeWilde: definitely not a bot", "_USER_: definitely not a bot"), ("wth twitter @b.j.dewilde", "wth twitter _USER_.j.dewilde"), ("[email protected] is not a user handle", "[email protected] is not a user handle"), ] for in_, out_ in in_outs: assert preprocessing.replace_user_handles(in_) == out_
def checkLenTweet(raw_data): data = txt.replace_urls(raw_data, "") data = txt.replace_emails(data, "") data = txt.replace_emojis(data, "") data = txt.replace_user_handles(data, "") data = txt.replace_phone_numbers(data, "") data = txt.replace_numbers(data, "") data = txt.replace_currency_symbols(data, "") data = txt.replace_hashtags(data, "") if len(data) < 28: #Lunghezza media di un tweet return False else: return True
def preprocess_sentence(sent, lower=True): """Pre-process a sentence ( via ``textacy.preprocess` module ). Args: sent (str): text. lower (bool): whether to return a lowercase string. Returns: str """ # normalize unicode sent = preprocessing.normalize_unicode(sent) # deaccent sent = preprocessing.remove_accents(sent) # replace newline chars sent = re.sub("\n|\r", " ", sent) # unpack contractions sent = contractions.fix(sent) # replace emoji symbols sent = preprocessing.replace_emojis(sent) # replace hashtags sent = preprocessing.replace_hashtags(sent) # replace user handles sent = preprocessing.replace_user_handles(sent) # replace currency symbols sent = preprocessing.replace_currency_symbols(sent) # replace emails sent = preprocessing.replace_emails(sent) # replace URLs sent = preprocessing.replace_urls(sent) # remove punctuation sent = preprocessing.remove_punctuation(sent) # normalize whitespace sent = preprocessing.normalize_whitespace(sent) if lower: sent = sent.lower() return sent
def textacy_preprocess(sentence): """Preprocess text.""" sentence = preprocessing.normalize_hyphenated_words(sentence) sentence = preprocessing.normalize_quotation_marks(sentence) #sentence = preprocessing.normalize_repeating_chars(sentence) sentence = preprocessing.normalize_unicode(sentence) sentence = preprocessing.normalize_whitespace(sentence) sentence = preprocessing.remove_accents(sentence) sentence = preprocessing.remove_punctuation(sentence) sentence = preprocessing.replace_currency_symbols(sentence) sentence = preprocessing.replace_emails(sentence) sentence = preprocessing.replace_emojis(sentence) sentence = preprocessing.replace_hashtags(sentence) sentence = preprocessing.replace_numbers(sentence) sentence = preprocessing.replace_phone_numbers(sentence) sentence = preprocessing.replace_urls(sentence) sentence = preprocessing.replace_user_handles(sentence) return sentence
def _clean(self, text: str): txt = text.strip() # txt = preprocessing.normalize_unicode(txt, form="NFKC") # txt = preprocessing.remove_punctuation(txt) # Collapse whitespaces txt = preprocessing.normalize_whitespace(txt) # Remove newlines txt = preprocessing.normalize_repeating_chars(txt, chars="\n", maxn=1) # fix hyphen-ated words txt = preprocessing.normalize_hyphenated_words(txt) txt = preprocessing.normalize_quotation_marks(txt) txt = preprocessing.replace_urls(txt, replace_with="") txt = preprocessing.replace_phone_numbers(txt, replace_with="") txt = preprocessing.replace_emails(txt, replace_with="") txt = preprocessing.replace_user_handles(txt, replace_with="") txt = preprocessing.normalize_repeating_chars(txt, chars=".,;:-_ ", maxn=1) txt = re.sub("\n ", " ", txt) txt = re.sub(" \n", " ", txt) txt = re.sub("\n", " ", txt) txt = re.sub(" . ", " ", txt) # txt = text.encode().decode("unicode-escape") # Used ftfy for "fixing" broken text, e.g. Unicode # txt = fix_text(txt.strip(), normalization="NFKC") # re- minissence => reminissence # txt = re.sub(r"([a-z])\-\s{,2}([a-z])", r"\1\2", txt) # collapse two+ newlines into single whitespace # txt = re.sub(r"\s+\n{1,}\s*(\w)", r" \1", txt) # collapse two+ newlines into single whitespace # txt = re.sub("\n+", " ", txt) """ # collapse two+ newlines into single whitespace txt = re.sub(r"\s+\n{2,}\s*(\w)", r" \1", txt) # double-newlines to dots txt = re.sub(r"\n\n", ". ", txt) # collapse whitespace txt = re.sub(r"(\s){2,}", r"\1", txt) # collapse dots txt = re.sub(r"\.{2,}", ".", txt) # newline to whitespace between word characters txt = re.sub(r"(\w)\n(\w)", r"\1 \2", txt) # newline + open brace to whitespace txt = re.sub(r"(\w)\n(\()", r"\1 \2", txt) # comma + newline to whitespace txt = re.sub(r"(\w)\,\n(\w)", r"\1 \2", txt) # Number end of sentence, followed by sentence that starts with number + dot txt = re.sub(r"(\d+)\.(\d\.\s+)", r"\1. ", txt) # remove decimals + dot after whitespace followed by whitespace txt = re.sub(r"(\.\s*)\d+\.\s+", r"\1", txt) # collapse backslashes txt = re.sub(r"\\{2,}", r"\\", txt) # remove 'escaped backslash' artefacts txt = re.sub(r"\\\\", "", txt) # remove lowdash artifacts ("lines") txt = re.sub(r"_{2,}", r"", txt) # normalize newline txt = re.sub(r"\r\n", r"\n", txt) # Linebreaks starting with numbers \n77\n txt = re.sub(r"\n\d+\n", r"\n", txt) # remove quotes + decimals on beginning of sentences txt = re.sub(r"\.([\"']?)\d+\s+", r".\1", txt) # remove quotes + decimals on beginning of sentences txt = re.sub(r"\.([\"']?)\d+\s+", r".\1", txt) # collapse dots txt = re.sub(r"\.\s+\.", ". ", txt) # collapse whitespace txt = re.sub(r"(\w+)\s{2,}(\w+)", r"\1 \2", txt) # Add space+ dot with double quotes txt = re.sub(r"\.\"(\w+)", r'.". \1', txt) # Add space+ between two sentences txt = re.sub(r"([a-z])\.([A-Z])", r"\1. \2", txt) """ return txt
def preprocess_text(text, char_count_filter=True, stopwords=None, min_len=2, max_len=15): """ Pre-processing steps prior to spaCy nlp pipeline. Optional filtering of tokens based on character length. Parameters ---------- text : str char_count_filter : bool stopwords : iterable, None min_len : int max_len : int Returns ------- text : str pre-processed text """ # 1) convert to lower case for robust stop-word recognition text = text.lower() # 2) normalise text = preprocessing.normalize_quotation_marks(text) # text = preprocessing.normalize_repeating_chars(text) text = preprocessing.normalize_hyphenated_words(text) text = preprocessing.normalize_whitespace(text) # 3) replace text = preprocessing.replace_currency_symbols(text) text = preprocessing.replace_emails(text) text = preprocessing.replace_emojis(text) text = preprocessing.replace_hashtags(text) text = preprocessing.replace_numbers(text) text = preprocessing.replace_phone_numbers(text) text = preprocessing.replace_urls(text) text = preprocessing.replace_user_handles(text) # 4) remove text = preprocessing.remove_accents(text) text = preprocessing.remove_punctuation(text) text = re.sub("[^A-Za-z0-9]+", " ", text) # keep text and numbers # 5) optionally remove tokens based on length if char_count_filter & (stopwords is not None): # filter based on token length tokens = gensim.utils.simple_preprocess(doc=text, min_len=min_len, max_len=max_len) # filter case-specific words tokens = [token for token in tokens if token not in stopwords] # convert processed list of tokens back to one string text = " ".join(tokens) else: raise NotImplementedError("Not implemented.") return text