def setUp(self):
     """Carga de los datos de prueba (20 Newsgroups corpus)."""
     newsdata = fetch_20newsgroups(data_home="./data/")
     self.ids = [str(i) for i in range(len(newsdata.target))]
     self.texts = newsdata.data
     self.labels = [newsdata.target_names[idx] for idx in newsdata.target]
     self.tc = TextClassifier(self.texts, self.ids)
    def test_classify(self):
        tc = TextClassifier(texts=[
            "Para hacer una pizza hace falta harina, tomate, queso y jamón",
            "Para hacer unas empanadas necesitamos tapas de empanadas, tomate, jamón y queso",
            "Para hacer un daiquiri necesitamos ron, una fruta y un poco de limón",
            "Para hacer un cuba libre necesitamos coca, ron y un poco de limón",
            "Para hacer una torta de naranja se necesita harina, huevos, leche, ralladura de naranja y polvo de hornear",
            "Para hacer un lemon pie se necesita crema, ralladura de limón, huevos, leche y harina"
        ],
                            ids=list(map(str, range(6))))

        # entrena un clasificador
        tc.make_classifier(
            name="recetas_classifier",
            ids=list(map(str, range(6))),
            labels=["Comida", "Comida", "Trago", "Trago", "Postre", "Postre"])

        labels_considerados, puntajes = tc.classify(
            classifier_name="recetas_classifier",
            examples=[
                "Para hacer un bizcochuelo de chocolate se necesita harina, huevos, leche y chocolate negro",
                "Para hacer un sanguche de miga necesitamos pan, jamón y queso"
            ])

        sorted_tuples = sorted(zip(puntajes[0], labels_considerados),
                               reverse=True)
        self.assertEqual(sorted_tuples[0][1], "Postre")

        sorted_tuples = sorted(zip(puntajes[1], labels_considerados),
                               reverse=True)
        self.assertEqual(sorted_tuples[0][1], "Comida")
Example #3
0
 def restart_text_classifier(self):
     all_questions = Question.query.all()
     if len(all_questions) > 0:
         qids = ['q' + str(q.id) for q in all_questions
                 if q.body is not None]
         rids = ['r' + str(q.id) for q in all_questions
                 if q.answer is not None]
         q_texts = [q.body + q.context for q in all_questions
                    if q.body is not None]
         r_texts = [q.answer for q in all_questions
                    if q.answer is not None]
         try:
             self.text_classifier = TextClassifier(q_texts + r_texts,
                                                   qids + rids)
             self.restart_suggesters(all_questions)
         except Exception as e:
             print(e)
    def test_get_similar(self):
        """Testea la búsqueda de textos similares."""

        tc = TextClassifier(texts=[
            "El árbol del edificio moderno tiene manzanas",
            "El árbol más chico tiene muchas mandarinas naranjas, y está cerca del monumento antiguo",
            "El edificio más antiguo tiene muchas cuadros caros porque era de un multimillonario",
            "El edificio más moderno tiene muchas programadoras que comen manzanas durante el almuerzo grupal"
        ],
                            ids=list(map(str, range(4))))

        ids, distancias, palabras_comunes = tc.get_similar(
            example="Me encontré muchas manzanas en el edificio",
            max_similars=4)

        self.assertEqual(ids, ['0', '3', '2', '1'])
        self.assertEqual(
            [sorted(palabras) for palabras in palabras_comunes],
            [[u'edificio', u'manzanas'], [u'edificio', u'manzanas', u'muchas'],
             [u'edificio', u'muchas'], [u'muchas']])
class TextClassifierPerformanceTestCase(unittest.TestCase):
    """Clase de tests del objeto TextClassifier."""
    def setUp(self):
        """Carga de los datos de prueba (20 Newsgroups corpus)."""
        newsdata = fetch_20newsgroups(data_home="./data/")
        self.ids = [str(i) for i in range(len(newsdata.target))]
        self.texts = newsdata.data
        self.labels = [newsdata.target_names[idx] for idx in newsdata.target]
        self.tc = TextClassifier(self.texts, self.ids)

    def test_reload_texts(self):
        # TODO aca van los tests!
        pass

    def test_classifier_performance(self):
        X_train, X_test, y_train, y_test = train_test_split(self.ids,
                                                            self.labels,
                                                            test_size=0.33,
                                                            random_state=42)
        self.tc.make_classifier("prueba", X_train, y_train)
        clasificador = getattr(self.tc, "prueba")
        indices = np.searchsorted(self.tc.ids, X_test)
        my_score = clasificador.score(self.tc.tfidf_mat[indices, :], y_test)
        self.assertGreater(my_score, 0.8)
Example #6
0
class Searcher:

    def __init__(self):
        self.text_classifier = None
        self.restart_text_classifier()
        self.per_page = 10

    def restart_text_classifier(self):
        all_questions = Question.query.all()
        if len(all_questions) > 0:
            qids = ['q' + str(q.id) for q in all_questions
                    if q.body is not None]
            rids = ['r' + str(q.id) for q in all_questions
                    if q.answer is not None]
            q_texts = [q.body + q.context for q in all_questions
                       if q.body is not None]
            r_texts = [q.answer for q in all_questions
                       if q.answer is not None]
            try:
                self.text_classifier = TextClassifier(q_texts + r_texts,
                                                      qids + rids)
                self.restart_suggesters(all_questions)
            except Exception as e:
                print(e)

    def restart_suggesters(self, questions):
        ids = ['q' + str(q.id) for q in questions if q.topic is not None]
        topic_ids = [str(q.topic.id) for q in questions if q.topic is not None]
        self.text_classifier.make_classifier("topics", ids, topic_ids)
        all_topics = Topic.query.all()
        for topic in all_topics:
            if len(topic.name) < 2:
                continue
            questions_with_topic = Question.query.filter_by(topic=topic).all()
            if len(set(questions_with_topic)) > 2:
                questions_with_topic_ids = [str(q.id) for q in questions_with_topic if q.subtopic is not None]
                subtopic_ids = [str(q.subtopic.id) for q in questions_with_topic if q.subtopic is not None]
                classifier_name = str(topic.id) + "_subtopics"
                self.text_classifier.make_classifier(classifier_name, questions_with_topic_ids, subtopic_ids)

    @staticmethod
    def list_models(db_session):
        def instances_with_at_least_one_question(model):
            return db_session.query(model). \
                join(Question). \
                group_by(model). \
                having(func.count(Question.id) > 0). \
                all()
        return {
            u'autor': instances_with_at_least_one_question(Author),
            u'informe': instances_with_at_least_one_question(Report),
            u'área de gestión': instances_with_at_least_one_question(SubTopic),
            u'ministerio': instances_with_at_least_one_question(Topic)
        }

    @staticmethod
    def get_question(question_id):
        question = Question.query.get(question_id)
        return question

    def search_from_url(self):
        query = self.query_from_url()
        return self.search(query)

    def delete_results_from_url(self, db_session):
        query = self.query_from_url()
        results = self._search_questions(query)
        for question, keywords in results:
            db_session.delete(question)
        db_session.commit()
        self.restart_text_classifier()
        return

    def search(self, query):
        results = self._search_questions(query)
        return self._paginate(results, query)

    def _search_questions(self, query):
        if query['text'] is not None:
            g.similarity_cutoff = 1.1
            results = self._search_similar(query)
        else:
            results = Question.query.all()
            results = self._order_results(results, query)
            results = [(result, []) for result in results]
        results = self._filter_results(results, query['filters'])
        return results

    @staticmethod
    def _order_results(results, query):
        if query['order'] in ('asc', 'desc'):
            return sorted(results, key=lambda x: (x.report.name, x.number), reverse=query['order'] == 'desc')
        else:
            return results

    def _paginate(self, results, query):
        per_page = 'por-pagina' in query and int(query['por-pagina']) or self.per_page
        pagination = {
            'current_page': query['current_page'],
            'total_pages': int(math.ceil(len(results) / float(per_page))),
            'total_results': len(results)
        }
        from_position = (pagination['current_page'] - 1) * per_page
        to_position = pagination['current_page'] * per_page
        return {
            'pagination': pagination,
            'result_list': results[from_position:to_position],
            'query': query
        }

    @staticmethod
    def _pass_filter(result, filters):
        """Recives an item of the results list [(result, best_words)]
            and a dict of filter_ids and decides whether that element is
            accepted by the filter or not.
        """
        result_only = result[0]
        comparisions = []
        for filter_attr, filter_value in filters.items():
            if filter_value['filter_value'] and len(filter_value['filter_value']) > 0:
                compare_to = filter_value['filter_value'][0].id
            else:
                compare_to = filter_value['filter_value']
            if filter_value['filter_by'] == 'igualdad':
                comparisions.append(getattr(result_only, filter_attr) == compare_to)
            else:
                comparisions.append(getattr(result_only, filter_attr) != compare_to)
        return all(comparisions)

    @staticmethod
    def _collect_filter_values(filters):
        filter_models = {
            'ministerio': ('topic_id', Topic),
            'area': ('subtopic_id', SubTopic),
            'autor': ('author_id', Author),
            'informe': ('report_id', Report)
        }
        filter_values = {}
        for filter_name, filter_model in filter_models.items():
            if filter_name in filters.keys():
                comparision_key = filter_name + '-comparacion'
                filter_info = {
                    'filter_by': comparision_key in filters and filters[comparision_key] or 'igualdad',
                    'filter_value': None
                }
                if len(filters[filter_name]) > 0:
                    filter_info['filter_value'] = filter_model[1].query.filter_by(name=filters[filter_name]).all()
                filter_values[filter_model[0]] = filter_info
        return filter_values

    def _filter_results(self, results, filters):
        filter_values = self._collect_filter_values(filters)
        filtered_questions = filter(lambda result: self._pass_filter(result, filter_values), results)
        if 'creado-en' in filters:
            created_at = datetime.strptime(filters['creado-en'], '%Y-%m-%d %H:%M:%S')
            filtered_questions = filter(lambda x: x[0].created_at == created_at, filtered_questions)
        return list(filtered_questions)

    def get_similar_to(self, question):
        query = self.query_from_url()
        query['id'] = question.id
        if query['based_on'] == 'pregunta':
            query['text'] = 'q' + str(question.id)
        elif query['based_on'] == 'respuesta':
            query['text'] = 'r' + str(question.id)
        else:
            query['text'] = question.context + ' ' + question.body + ' ' + question.answer
        return self.search(query)

    def _search_similar(self, query):
        question_id = query['text']
        all_questions = Question.query.all()
        if self.text_classifier is None:
            return []
        if query['target'] == 'preguntas':
            id_list = ['q' + str(q.id) for q in all_questions
                       if q.body is not None and len(q.body) > 0]
        elif query['target'] == 'respuestas':
            id_list = ['r' + str(q.id) for q in all_questions
                       if q.answer is not None and len(q.answer) > 0]
        else:
            id_list = ['q' + str(q.id) for q in all_questions
                       if q.body is not None and len(q.body) > 0] + ['r' + str(q.id) for q in all_questions
                       if q.answer is not None and len(q.answer) > 0]
        if not isinstance(question_id, str):
            question_id = str(question_id)
        per_page = 'por-pagina' in query and int(query['por-pagina']) or self.per_page
        if id_list:
            max_options = min(per_page, len(id_list))
        else:
            max_options = per_page
        ids_sim, dist, best_words = self.text_classifier.get_similar(
            question_id, max_similars=max_options, filter_list=id_list, term_diff_max_rank=40)
        ids_sim = self._clean_ids(ids_sim, query)
        results = []
        for qid in ids_sim:
            results.append(Question.query.get(qid))
        return zip(results, best_words, dist)

    def suggest_tags(self, tag_type, question_id):
        question = Question.query.get(question_id)
        if tag_type == 'topics':
            tags, vals = self.text_classifier.classify(
                'topics', ['q' + str(question_id)])
            model = Topic
        else:
            classifier_name = str(question.topic_id) + "_" + tag_type
            model = SubTopic

            if classifier_name in dir(self.text_classifier):
                tags, vals = self.text_classifier.classify(
                    classifier_name, ['q' + str(question_id)])
            elif question.topic is not None:
                subtopics = question.topic.subtopics
                return list(sorted([x.name for x in subtopics]))
            else:
                subtopics = SubTopic.query.all()
                return list(sorted([s.name for s in subtopics]))

        tag_names = [model.query.get(idt).name for idt in tags]
        sorted_tags = [x for (y, x) in
                       sorted(zip(vals.tolist()[0], tag_names))]
        return list(reversed(sorted_tags))

    @staticmethod
    def query_from_url():
        filter_titles = [
            'ministerio', 'ministerio-comparacion',
            'area', 'area-comparacion',
            'autor', 'autor-comparacion',
            'informe', 'informe-comparacion',
            'organismo-requerido',
            'pregunta', 'creado-en'
        ]
        query = {
            'text': request.args.get('q'),
            'target': request.args.get('buscar-dentro-de', ''),
            'based_on': request.args.get('buscar-usando', ''),
            'current_page': int(request.args.get('pagina', 1)),
            'can_add_more_filters': True,
            'order': request.args.get('orden', 'asc'),
            'filters': {t: request.args.get(t).lower() for t in filter_titles
                        if request.args.get(t) is not None},
        }
        if request.args.get('por-pagina'):
            query['por-pagina'] = request.args.get('por-pagina')
        return query

    @staticmethod
    def _clean_ids(ids, query):
        ids = map(lambda x: x[1:], ids)
        if 'id' in query:
            question_id = str(query['id'])
            ids = filter(lambda x: x != question_id, ids)
        seen = set()
        seen_add = seen.add
        return [int(x) for x in ids if not (x in seen or seen_add(x))]

    @staticmethod
    def url_maker(query, page=None):
        args = {}
        if 'text' in query and query['text'] is not None:
            args['q'] = query['text']
        for title, value in query['filters'].items():
            args[title] = value
        if page is not None:
            args['pagina'] = page
        return url_for('search', **args)
Example #7
0
class Searcher:
    def __init__(self):
        self.text_classifier = None
        self.restart_text_classifier()
        self.per_page = 10

    def restart_text_classifier(self):
        all_questions = Question.query.all()
        if len(all_questions) > 0:
            qids = [
                'q' + str(q.id) for q in all_questions if q.body is not None
            ]
            rids = [
                'r' + str(q.id) for q in all_questions if q.answer is not None
            ]
            q_texts = [
                q.body + q.context for q in all_questions if q.body is not None
            ]
            r_texts = [q.answer for q in all_questions if q.answer is not None]
            try:
                self.text_classifier = TextClassifier(q_texts + r_texts,
                                                      qids + rids)
                self.restart_suggesters(all_questions)
            except Exception as e:
                print(e)

    def restart_suggesters(self, questions):
        ids = ['q' + str(q.id) for q in questions if q.topic is not None]
        topic_ids = [str(q.topic.id) for q in questions if q.topic is not None]
        self.text_classifier.make_classifier("topics", ids, topic_ids)
        all_topics = Topic.query.all()
        for topic in all_topics:
            if len(topic.name) < 2:
                continue
            questions_with_topic = Question.query.filter_by(topic=topic).all()
            if len(set(questions_with_topic)) > 2:
                questions_with_topic_ids = [
                    str(q.id) for q in questions_with_topic
                    if q.subtopic is not None
                ]
                subtopic_ids = [
                    str(q.subtopic.id) for q in questions_with_topic
                    if q.subtopic is not None
                ]
                classifier_name = str(topic.id) + "_subtopics"
                self.text_classifier.make_classifier(classifier_name,
                                                     questions_with_topic_ids,
                                                     subtopic_ids)

    @staticmethod
    def list_models(db_session):
        def instances_with_at_least_one_question(model):
            return db_session.query(model). \
                join(Question). \
                group_by(model). \
                having(func.count(Question.id) > 0). \
                all()

        return {
            u'autor': instances_with_at_least_one_question(Author),
            u'origen': instances_with_at_least_one_question(Report),
            u'área de gestión': instances_with_at_least_one_question(SubTopic),
            u'ministerio': instances_with_at_least_one_question(Topic)
        }

    @staticmethod
    def get_question(question_id):
        question = Question.query.get(question_id)
        return question

    def search_from_url(self):
        query = self.query_from_url()
        return self.search(query)

    def delete_results_from_url(self, db_session):
        query = self.query_from_url()
        results = self._search_questions(query)
        for question, keywords in results:
            db_session.delete(question)
        db_session.commit()
        self.restart_text_classifier()
        return

    def search(self, query):
        results = self._search_questions(query)
        return self._paginate(results, query)

    def _search_questions(self, query):
        if query['text'] is not None:
            g.similarity_cutoff = 1.1
            similarity_results = self._search_similar(query)
            ids = [row[0] for row in similarity_results]
            questions = self._get_filtered_results(ids, query['filters'])
            filtered_ids = [q.id for q in questions]
            results = []
            for i, qid in enumerate(filtered_ids):
                result = similarity_results[ids.index(qid)]
                results.append((questions[i], ) + result[1:])
        else:
            questions = self._get_filtered_results(None, query['filters'])
            questions = self._order_results(questions, query)
            results = [(q, []) for q in questions]
        return results

    @staticmethod
    def _order_results(results, query):
        if query['order'] in ('asc', 'desc'):
            return sorted(results,
                          key=lambda x: (x.report.name, x.number),
                          reverse=query['order'] == 'desc')
        elif query['order'] in ('date-asc', 'date-desc'):
            none_res = filter(lambda x: x.question_date is None, results)
            not_none_res = filter(lambda x: x.question_date is not None,
                                  results)
            ord_results = sorted(not_none_res,
                                 key=lambda x: x.question_date,
                                 reverse=query['order'] == 'date-desc')
            return list(ord_results) + list(none_res)
        else:
            return results

    def _paginate(self, results, query):
        per_page = 'por-pagina' in query and int(
            query['por-pagina']) or self.per_page
        pagination = {
            'current_page': query['current_page'],
            'total_pages': int(math.ceil(len(results) / float(per_page))),
            'total_results': len(results)
        }
        from_position = (pagination['current_page'] - 1) * per_page
        to_position = pagination['current_page'] * per_page
        return {
            'pagination': pagination,
            'result_list': results[from_position:to_position],
            'query': query
        }

    # @staticmethod
    # def _pass_filter(result, filters):
    #     """Recives an item of the results list [(result, best_words)]
    #         and a dict of filter_ids and decides whether that element is
    #         accepted by the filter or not.
    #     """
    #     result_only = result[0]
    #     comparisions = []
    #     for filter_attr, filter_value in filters.items():
    #         if filter_value['filter_value'] and len(filter_value['filter_value']) > 0:
    #             compare_to = filter_value['filter_value'][0].id
    #         else:
    #             compare_to = filter_value['filter_value']
    #         if filter_value['filter_by'] == 'igualdad':
    #             comparisions.append(getattr(result_only, filter_attr) == compare_to)
    #         else:
    #             comparisions.append(getattr(result_only, filter_attr) != compare_to)
    #     return all(comparisions)

    @staticmethod
    def _collect_filter_values(filters):
        operators = {
            'igualdad': operator.eq,
            'desigualdad': operator.ne,
            'mayorigual': operator.ge,
            'menorigual': operator.le
        }
        filter_models = {
            'ministerio': ('topic_id', Topic),
            'area': ('subtopic_id', SubTopic),
            'autor': ('author_id', Author),
            'origen': ('report_id', Report),
            'fecha': ('question_date', None),
            'creado-en': ('created_at', None)
        }
        filter_query = {}
        for filter_name, filter_model in filter_models.items():
            if filter_name in filters.keys():
                comparison_key = filter_name + '-comparacion'
                comparator = comparison_key in filters and filters[
                    comparison_key] or 'igualdad'
                info = {}
                info['comparator'] = comparator
                if len(filters[filter_name]) > 0 and filter_model[1]:
                    info['value'] = filter_model[1].query.filter_by(
                        name=filters[filter_name]).first().id
                else:
                    info['value'] = filters[filter_name]
                filter_query[filter_model[0]] = info
        sql_filter = None
        for field, info in filter_query.items():
            curr_operator = operators[info['comparator']]
            print(info)
            if sql_filter is None:
                sql_filter = curr_operator(getattr(Question, field),
                                           info['value'])
            else:
                sql_filter = (sql_filter) & (curr_operator(
                    getattr(Question, field), info['value']))
        return sql_filter

    def _get_filtered_results(self, ids, filters):
        sql_filter = self._collect_filter_values(filters)
        if ids is not None and sql_filter is not None:
            sql_filter = (sql_filter) & (Question.id.in_(ids))
            results = Question.query.filter(sql_filter).all()
            results = sorted(results, key=lambda x: ids.index(x.id))
        elif ids is not None:
            results = Question.query.filter(Question.id.in_(ids)).all()
            results = sorted(results, key=lambda x: ids.index(x.id))
        elif sql_filter is not None:
            results = Question.query.filter(sql_filter).all()
        else:
            results = Question.query.all()
        return results

    def get_similar_to(self, question):
        query = self.query_from_url()
        query['id'] = question.id
        if query['based_on'] == 'pregunta':
            query['text'] = 'q' + str(question.id)
        elif query['based_on'] == 'respuesta':
            query['text'] = 'r' + str(question.id)
        else:
            query[
                'text'] = question.context + ' ' + question.body + ' ' + question.answer
        return self.search(query)

    def _search_similar(self, query):
        question_id = query['text']
        all_questions = Question.query.all()
        if self.text_classifier is None:
            return []
        if query['target'] == 'preguntas':
            id_list = [
                'q' + str(q.id) for q in all_questions
                if q.body is not None and len(q.body) > 0
            ]
        elif query['target'] == 'respuestas':
            id_list = [
                'r' + str(q.id) for q in all_questions
                if q.answer is not None and len(q.answer) > 0
            ]
        else:
            id_list = [
                'q' + str(q.id) for q in all_questions
                if q.body is not None and len(q.body) > 0
            ] + [
                'r' + str(q.id) for q in all_questions
                if q.answer is not None and len(q.answer) > 0
            ]
        if not isinstance(question_id, str):
            question_id = str(question_id)
        per_page = 'por-pagina' in query and int(
            query['por-pagina']) or self.per_page
        if id_list:
            max_options = min(per_page, len(id_list))
        else:
            max_options = per_page
        ids_sim, dist, best_words = self.text_classifier.get_similar(
            question_id,
            max_similars=max_options,
            filter_list=id_list,
            term_diff_max_rank=40)
        ids_sim, dist, best_words = self._clean_ids(ids_sim, dist, best_words,
                                                    query)
        return list(zip(ids_sim, best_words, dist))

    def suggest_tags(self, tag_type, question_id):
        question = Question.query.get(question_id)
        if tag_type == 'topics':
            tags, vals = self.text_classifier.classify(
                'topics', ['q' + str(question_id)])
            model = Topic
        else:
            classifier_name = str(question.topic_id) + "_" + tag_type
            model = SubTopic

            if classifier_name in dir(self.text_classifier):
                tags, vals = self.text_classifier.classify(
                    classifier_name, ['q' + str(question_id)])
            elif question.topic is not None:
                subtopics = question.topic.subtopics
                return list(sorted([x.name for x in subtopics]))
            else:
                subtopics = SubTopic.query.all()
                return list(sorted([s.name for s in subtopics]))

        tag_names = [model.query.get(idt).name for idt in tags]
        sorted_tags = [
            x for (y, x) in sorted(zip(vals.tolist()[0], tag_names))
        ]
        return list(reversed(sorted_tags))

    @staticmethod
    def query_from_url():
        filter_titles = [
            'ministerio', 'ministerio-comparacion', 'area', 'area-comparacion',
            'autor', 'autor-comparacion', 'origen', 'origen-comparacion',
            'organismo-requerido', 'pregunta', 'creado-en',
            'creado-en-comparacion', 'fecha', 'fecha-comparacion'
        ]
        query = {
            'text': request.args.get('q'),
            'target': request.args.get('buscar-dentro-de', ''),
            'based_on': request.args.get('buscar-usando', ''),
            'current_page': int(request.args.get('pagina', 1)),
            'can_add_more_filters': True,
            'order': request.args.get('orden', 'asc'),
            'filters': {
                t: request.args.get(t).lower()
                for t in filter_titles if request.args.get(t) is not None
            },
        }
        if request.args.get('por-pagina'):
            query['por-pagina'] = request.args.get('por-pagina')
        return query

    @staticmethod
    def _clean_ids(ids, distances, best_words, query):
        ids = list(map(lambda x: int(x[1:]), ids))
        joined_results = {}
        for i in range(len(ids)):
            x = ids[i]
            if x not in joined_results:
                joined_results[x] = (distances[i], best_words[i], x)
            else:
                joined_results[x] = (min(joined_results[x][0], distances[i]),
                                     joined_results[x][1] + best_words[i], x)
        if 'id' in query:
            question_id = query['id']
            if question_id in joined_results:
                del joined_results[question_id]

        final_results = sorted(list(joined_results.values()))
        distances, words, ids = zip(*final_results)
        return ids, distances, words

    @staticmethod
    def url_maker(query, page=None):
        args = {}
        if 'text' in query and query['text'] is not None:
            args['q'] = query['text']
        if 'order' in query:
            args['order'] = query['order']
        for title, value in query['filters'].items():
            args[title] = value
        if page is not None:
            args['pagina'] = page
        return url_for('search', **args)
Example #8
0
for archivo in testers:
    cadena = textract.process(archivo, method='pdfminer')
    ejem.append(cadena)

print("Archivos:")
print(dispos)
print(informes)

print(testers)
print("--------")
print(etiquetas)

largoTotal = len(informes) + len(dispos) + len(otros)

tc = TextClassifier(textos, ids=map(str, range(largoTotal)))

# entrena un clasificador
tc.make_classifier(name="recetas_classifier",
                   ids=map(str, range(largoTotal)),
                   labels=etiquetas)

labels_considerados, puntajes = tc.classify(
    classifier_name="recetas_classifier", examples=ejem)

print labels_considerados
print puntajes

for index, x in enumerate(testers):
    print "-----------"
    print x