# train_reviews = np.load("../../Yelp_useful_train_fulltext_glove_300_X.npy") # train_labels = np.load("../../Yelp_useful_train_fulltext_glove_300_y.npy") # test_reviews = np.load("../../Yelp_useful_test_fulltext_glove_300_X.npy") # test_labels = np.load("../../Yelp_useful_test_fulltext_glove_300_y.npy") train_reviews = np.load("../../Yelp_cool_train_fulltext_glove_300_X.npy") train_labels = np.load("../../Yelp_cool_train_fulltext_glove_300_y.npy") test_reviews = np.load("../../Yelp_cool_test_fulltext_glove_300_X.npy") test_labels = np.load("../../Yelp_cool_test_fulltext_glove_300_y.npy") WV_FILE_GLOBAL = path_join(ROOT_PATH, "embeddings/wv/glove.42B.300d.120000-glovebox.pkl") gb_global = pickle.load(open(WV_FILE_GLOBAL, "rb")) wv_size = gb_global.W.shape[1] model = Sequential() model.add( make_embedding(vocab_size=gb_global.W.shape[0], init=gb_global.W, wv_size=wv_size, fixed=True, constraint=None) ) model.add(GRU(128, init="uniform")) model.add(Dropout(0.2)) model.add(Dense(1, init="uniform")) model.add(Activation("sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam", class_mode="binary") history = train_neural.train_sequential(model, train_reviews, train_labels, MODEL_FILE) acc = train_neural.test_sequential(model, test_reviews, test_labels, MODEL_FILE) train_neural.write_log(model, history, __file__, acc, LOG_FILE)
model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(25)) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(10)) model.add(Activation('relu')) model.add(Dropout(0.2)) #model.add(MaxoutDense(1, 1)) # SALE 1 model.add(Dense(5)) model.add(Activation('relu')) # model_basic.add(Dropout(0.1)) model.add(Dense(1)) model.add(Activation('tanh')) # model_basic.add(Dense(10, 1)) # model_basic.add(Activation('relu')) model.compile(loss='binary_crossentropy', optimizer="adam", class_mode="binary") history = train_neural.train_sequential(model, X_train, train_labels, MODEL_FILE) acc = train_neural.test_sequential(model, X_test, test_labels, MODEL_FILE) train_neural.write_log(model, history, __file__, acc, LOG_FILE)
model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Convolution1D(128, 3, subsample_length=2, init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Convolution1D(128, 3, subsample_length=2, init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Convolution1D(128, 3, subsample_length=2, init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(1, init='he_uniform')) model.add(Activation('sigmoid')) #sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='binary_crossentropy', optimizer="adam", class_mode="binary") history = train_neural.train_sequential(model, train_reviews, train_labels, MODEL_FILE) acc = train_neural.test_sequential(model, test_reviews, test_labels, MODEL_FILE) train_neural.write_log(model, history, __file__, acc, LOG_FILE)
model.add(Dense(50)) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(25)) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(10)) model.add(Activation('relu')) model.add(Dropout(0.2)) #model.add(MaxoutDense(1, 1)) # SALE 1 model.add(Dense(5)) model.add(Activation('relu')) # model_basic.add(Dropout(0.1)) model.add(Dense(1)) model.add(Activation('tanh')) # model_basic.add(Dense(10, 1)) # model_basic.add(Activation('relu')) model.compile(loss='binary_crossentropy', optimizer="adam", class_mode="binary") history = train_neural.train_sequential(model, X_train, train_labels, MODEL_FILE) acc = train_neural.test_sequential(model, X_test, test_labels, MODEL_FILE) train_neural.write_log(model, history, __file__, acc, LOG_FILE)