Example #1
0
def vanilla_rnn(num_words,
                state,
                lra,
                dropout,
                num_outputs=2,
                emb_dim=50,
                input_length=500):
    model = Sequential()
    model.add(
        Embedding(input_dim=num_words + 1,
                  output_dim=emb_dim,
                  input_length=input_length,
                  trainable=False,
                  weights=[embed_matrix]))
    model.add(
        SimpleRNN(units=state,
                  input_shape=(num_words, 1),
                  return_sequences=False))
    model.add(Dropout(dropout))
    model.add(Dense(num_outputs, activation='sigmoid'))

    RMS = optimizers.RMSprop(lr=lra)
    model.compile(loss='binary_crossentropy',
                  optimizer=RMS,
                  metrics=['accuracy'])

    return model
Example #2
0
    def __init__(self, num_actions):
        super(ReinforceAgent, self).__init__()
        self.num_actions = num_actions

        self.start_embedding_size = 50
        self.gru_embedding_size = 100
        self.hidden_dense_size = 100

        self.state_embedding = Embedding(63, self.start_embedding_size)
        self.hand_embedding = Embedding(252, self.start_embedding_size)
        self.gru = GRU(self.gru_embedding_size,
                       return_sequences=True,
                       return_state=True)
        self.hand_dense_layer = Dense(self.hidden_dense_size)
        self.concatted_dense_1 = Dense(self.hidden_dense_size)
        self.final_dense = Dense(61, activation='softmax')

        self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
def target_word_hidden(inputs, target_role, n_word_vocab, n_role_vocab, emb_init, 
    n_factors_cls=512, n_hidden=256, using_dropout=False, dropout_rate=0.3):
    """Hidden layer of non-incremental model role-filler to predict target word given context 
    (input words, input roles, target role).

    # Args:
        inputs:         output of context embedding from the last layer, shape is (batch_size, input_length)
        target_role:    place holder for target roles, shape is (batch_size, 1)
        n_word_vocab:   size of word vocabulary
        n_role_vocab:   size of role vocabulary
        emb_init:       initializer of embedding
        n_hidden:       number of hidden units
        using_dropout:      bool, using drop-out layer or not
        dropout_rate:       rate of drop-out layer        
    # Return:
        (n_factors_cls, )
    """
    
    # target role embedding; shape is (batch_size, 1, n_factors_cls)
    target_role_embedding = Embedding(n_role_vocab, n_factors_cls, 
        embeddings_initializer=emb_init, 
        name='target_role_embedding')(target_role)

    if using_dropout:
        # Drop-out layer after embeddings
        target_role_embedding = Dropout(dropout_rate)(target_role_embedding)

    # reduce dimension of tensor from 3 to 2
    target_role_embedding = Lambda(lambda x: K.sum(x, axis=1),
        output_shape=(n_factors_cls,))(target_role_embedding)
    
    # context_emb after linear projection
    weighted_context_embedding = Dense(n_factors_cls, # QUESTION: what's the point of the linear transformation? (team1-change)
        activation='linear', 
        use_bias=False,
        input_shape=(n_hidden, ))(inputs)

    # if using_dropout:
    #     # Drop-out layer after fully connected layer
    #    weighted_context_embedding = Dropout(0.5)(weighted_context_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply()([weighted_context_embedding, target_role_embedding])

    return hidden
def target_role_hidden(inputs, target_word, n_word_vocab, n_role_vocab, emb_init, 
    n_factors_cls=512, n_hidden=256, using_dropout=False, dropout_rate=0.3):
    """Hidden layer of multi-task non-incremental model role-filler to predict target role given context 
    (input words, input roles, target word).

    # Args:
        context_emb:    output of context embedding from the last layer, shape is (batch_size, input_length)
        target_word:    place holder for target word, shape is (batch_size, 1)
        n_word_vocab:   size of word vocabulary
        n_role_vocab:   size of role vocabulary
        emb_init:       initializer of embedding
        n_hidden:       number of hidden units
    # Return:
        (n_factors_cls, )
    """
    
    # target role embedding; shape is (batch_size, 1, n_factors_emb)
    target_word_embedding = Embedding(n_word_vocab, n_factors_cls, 
        embeddings_initializer=emb_init, 
        name='target_word_embedding')(target_word)

    if using_dropout:
        target_word_embedding = Dropout(dropout_rate)(target_word_embedding)

    # reduce dimension of tensor from 3 to 2
    target_word_embedding = Lambda(lambda x: K.sum(x, axis=1),
        output_shape=(n_factors_cls,))(target_word_embedding)
    
    # context_emb after linear projection
    weighted_context_embedding = Dense(n_factors_cls, 
        activation='linear', 
        use_bias=False,        
        input_shape=(n_hidden, ))(inputs)

    # if using_dropout:
    #     weighted_context_embedding = Dropout(0.5)(weighted_context_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply()([weighted_context_embedding, target_word_embedding])

    return hidden
Example #5
0
decoder_input_data = np.array(padded_answers)
print((decoder_input_data.shape, maxlen_answers))

# decoder_output_data
for i in range(len(tokenized_answers)):
    tokenized_answers[i] = tokenized_answers[i][1:]
padded_answers = preprocessing.sequence.pad_sequences(tokenized_answers,
                                                      maxlen=maxlen_answers,
                                                      padding='post')
onehot_answers = utils.to_categorical(padded_answers, vocab_size)
decoder_output_data = np.array(onehot_answers)
print(decoder_output_data.shape)

# 定义encoder-decoder模型
encoder_inputs = Input(shape=(None, ))
encoder_embedding = Embedding(vocab_size, 200, mask_zero=True)(encoder_inputs)
#参考链接:嵌入层 Embedding<https://keras.io/zh/layers/embeddings/#embedding>
encoder_outputs, state_h, state_c = tf.keras.layers.LSTM(
    200, return_state=True)(encoder_embedding)
#参考链接:https://keras.io/zh/layers/recurrent/#lstm
encoder_states = [state_h, state_c]

decoder_inputs = Input(shape=(None, ))
decoder_embedding = Embedding(vocab_size, 200, mask_zero=True)(decoder_inputs)
decoder_lstm = LSTM(200, return_state=True, return_sequences=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding,
                                     initial_state=encoder_states)
decoder_dense = Dense(vocab_size, activation=tf.keras.activations.softmax)
output = decoder_dense(decoder_outputs)

model = Model([encoder_inputs, decoder_inputs], output)
Example #6
0
def factored_embedding(input_words,
                       input_roles,
                       n_word_vocab,
                       n_role_vocab,
                       emb_init,
                       missing_word_id,
                       input_length,
                       n_factors_emb=256,
                       n_hidden=256,
                       mask_zero=True,
                       using_dropout=False,
                       dropout_rate=0.3,
                       using_bias=False):
    """Role-based word embedding combining word and role embedding.

    # Arguments:
        input_words:        place holder for input words, shape is (batch_size, input_length)
        input_roles:        place holder for input roles, shape is (batch_size, input_length)
        n_word_vocab:       size of word vocabulary
        n_role_vocab:       size of role vocabulary
        emb_init:           initializer of embedding
        missing_word_id:    the id used as place-holder for the role without a word appearing
        n_factors_emb:      tensor factorization number, default: 256
        n_sample:           number of samples, useful when there are negative samples
        mask_zero:          bool, zero out the weight of missing word
        using_dropout:      bool, using drop-out layer or not
        dropout_rate:       rate of drop-out layer
    """

    # word embedding; shape is (batch_size, input_length, n_factors_emb)
    word_embedding = Embedding(n_word_vocab,
                               n_factors_emb,
                               embeddings_initializer=emb_init,
                               name='org_word_embedding')(input_words)

    if mask_zero:
        # a hack zeros out the missing word inputs
        weights = np.ones((n_word_vocab, n_factors_emb))
        weights[missing_word_id] = 0
        mask = Embedding(n_word_vocab,
                         n_factors_emb,
                         weights=[weights],
                         trainable=False,
                         name='mask_missing')(input_words)

        # masked word embedding
        word_embedding = Multiply(name='word_embedding')(
            [word_embedding, mask])

        # Alternative implementation, need missing_word_id == 0
        # self.word_embedding = Masking(mask_value=0.,
        #     input_shape=(input_length, n_factors_emb)(word_embedding)

    # role embedding; shape is (batch_size, input_length, n_factors_emb)
    role_embedding = Embedding(n_role_vocab,
                               n_factors_emb,
                               embeddings_initializer=emb_init,
                               name='role_embedding')(input_roles)

    if using_dropout:
        # Drop-out layer after embeddings
        word_embedding = Dropout(dropout_rate)(word_embedding)
        role_embedding = Dropout(dropout_rate)(role_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply(name='multiply_composition')([
        word_embedding, role_embedding
    ])  # QUESTION: why multiply instead of concatenating? (team1-change)

    # fully connected layer, output shape is (batch_size, input_length, n_hidden)
    embedding = Dense(n_hidden,
                      activation='linear',
                      use_bias=using_bias,
                      input_shape=(n_factors_emb, ),
                      name='role_based_word_embedding')(hidden)

    return embedding