Example #1
0
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=100000,
        fc_layer_params=(100, ),
        # Params for collect
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=64,
        learning_rate=1e-3,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for checkpoints, summaries, and logging
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.contrib.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.contrib.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        py_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        py_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
    ]

    # TODO(kbanoop): Figure out if it is possible to avoid the with block.
    with tf.contrib.summary.record_summaries_every_n_global_steps(
            summary_interval):

        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_py_env = suite_gym.load(env_name)

        q_net = q_network.QNetwork(tf_env.time_step_spec().observation,
                                   tf_env.action_spec(),
                                   fc_layer_params=fc_layer_params)

        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate),
            # TODO(kbanoop): Decay epsilon based on global step, cf. cl/188907839
            epsilon_greedy=epsilon_greedy,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            td_errors_loss_fn=dqn_agent.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars)

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            tf_agent.collect_data_spec(),
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        eval_py_policy = py_tf_policy.PyTFPolicy(tf_agent.policy())

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        global_step = tf.train.get_or_create_global_step()

        replay_observer = [replay_buffer.add_batch]
        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())
        initial_collect_op = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=replay_observer,
            num_steps=initial_collect_steps).run()

        collect_policy = tf_agent.collect_policy()
        collect_op = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=replay_observer + train_metrics,
            num_steps=collect_steps_per_iteration).run()

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=2).prefetch(3)

        iterator = dataset.make_initializable_iterator()
        trajectories, _ = iterator.get_next()
        train_op = tf_agent.train(experience=trajectories,
                                  train_step_counter=global_step)

        train_checkpointer = common_utils.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=tf.contrib.checkpoint.List(train_metrics))
        policy_checkpointer = common_utils.Checkpointer(
            ckpt_dir=os.path.join(train_dir, 'policy'),
            policy=tf_agent.policy(),
            global_step=global_step)
        rb_checkpointer = common_utils.Checkpointer(
            ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
            max_to_keep=1,
            replay_buffer=replay_buffer)

        for train_metric in train_metrics:
            train_metric.tf_summaries(step_metrics=train_metrics[:2])
        summary_op = tf.contrib.summary.all_summary_ops()

        with eval_summary_writer.as_default(), \
             tf.contrib.summary.always_record_summaries():
            for eval_metric in eval_metrics:
                eval_metric.tf_summaries()

        init_agent_op = tf_agent.initialize()

        with tf.Session() as sess:
            # Initialize the graph.
            train_checkpointer.initialize_or_restore(sess)
            rb_checkpointer.initialize_or_restore(sess)
            sess.run(iterator.initializer)
            # TODO(sguada) Remove once Periodically can be saved.
            common_utils.initialize_uninitialized_variables(sess)

            sess.run(init_agent_op)
            tf.contrib.summary.initialize(session=sess)
            sess.run(initial_collect_op)

            global_step_val = sess.run(global_step)
            metric_utils.compute_summaries(
                eval_metrics,
                eval_py_env,
                eval_py_policy,
                num_episodes=num_eval_episodes,
                global_step=global_step_val,
                callback=eval_metrics_callback,
            )

            collect_call = sess.make_callable(collect_op)
            train_step_call = sess.make_callable(
                [train_op, summary_op, global_step])

            timed_at_step = sess.run(global_step)
            collect_time = 0
            train_time = 0
            steps_per_second_ph = tf.placeholder(tf.float32,
                                                 shape=(),
                                                 name='steps_per_sec_ph')
            steps_per_second_summary = tf.contrib.summary.scalar(
                name='global_steps/sec', tensor=steps_per_second_ph)

            for _ in range(num_iterations):
                # Train/collect/eval.
                start_time = time.time()
                collect_call()
                collect_time += time.time() - start_time
                start_time = time.time()
                for _ in range(train_steps_per_iteration):
                    loss_info_value, _, global_step_val = train_step_call()
                train_time += time.time() - start_time

                if global_step_val % log_interval == 0:
                    tf.logging.info('step = %d, loss = %f', global_step_val,
                                    loss_info_value.loss)
                    steps_per_sec = ((global_step_val - timed_at_step) /
                                     (collect_time + train_time))
                    sess.run(steps_per_second_summary,
                             feed_dict={steps_per_second_ph: steps_per_sec})
                    tf.logging.info('%.3f steps/sec' % steps_per_sec)
                    tf.logging.info(
                        'collect_time = {}, train_time = {}'.format(
                            collect_time, train_time))
                    timed_at_step = global_step_val
                    collect_time = 0
                    train_time = 0

                if global_step_val % train_checkpoint_interval == 0:
                    train_checkpointer.save(global_step=global_step_val)

                if global_step_val % policy_checkpoint_interval == 0:
                    policy_checkpointer.save(global_step=global_step_val)

                if global_step_val % rb_checkpoint_interval == 0:
                    rb_checkpointer.save(global_step=global_step_val)

                if global_step_val % eval_interval == 0:
                    metric_utils.compute_summaries(
                        eval_metrics,
                        eval_py_env,
                        eval_py_policy,
                        num_episodes=num_eval_episodes,
                        global_step=global_step_val,
                        callback=eval_metrics_callback,
                    )
Example #2
0
def train_eval(
    root_dir,
    env_name='CartPole-v0',
    num_iterations=1000,
    actor_fc_layers=(100,),
    value_net_fc_layers=(100,),
    use_value_network=False,
    use_tf_functions=True,
    # Params for collect
    collect_episodes_per_iteration=2,
    replay_buffer_capacity=2000,
    # Params for train
    learning_rate=1e-3,
    gamma=0.9,
    gradient_clipping=None,
    normalize_returns=True,
    value_estimation_loss_coef=0.2,
    # Params for eval
    num_eval_episodes=10,
    eval_interval=100,
    # Params for checkpoints, summaries, and logging
    log_interval=100,
    summary_interval=100,
    summaries_flush_secs=1,
    debug_summaries=True,
    summarize_grads_and_vars=False,
    eval_metrics_callback=None):
  """A simple train and eval for Reinforce."""
  root_dir = os.path.expanduser(root_dir)
  train_dir = os.path.join(root_dir, 'train')
  eval_dir = os.path.join(root_dir, 'eval')

  train_summary_writer = tf.compat.v2.summary.create_file_writer(
      train_dir, flush_millis=summaries_flush_secs * 1000)
  train_summary_writer.set_as_default()

  eval_summary_writer = tf.compat.v2.summary.create_file_writer(
      eval_dir, flush_millis=summaries_flush_secs * 1000)
  eval_metrics = [
      tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
      tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
  ]

  with tf.compat.v2.summary.record_if(
      lambda: tf.math.equal(global_step % summary_interval, 0)):
    tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
    eval_tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))

    actor_net = actor_distribution_network.ActorDistributionNetwork(
        tf_env.time_step_spec().observation,
        tf_env.action_spec(),
        fc_layer_params=actor_fc_layers)

    if use_value_network:
      value_net = value_network.ValueNetwork(
          tf_env.time_step_spec().observation,
          fc_layer_params=value_net_fc_layers)

    global_step = tf.compat.v1.train.get_or_create_global_step()
    tf_agent = reinforce_agent.ReinforceAgent(
        tf_env.time_step_spec(),
        tf_env.action_spec(),
        actor_network=actor_net,
        value_network=value_net if use_value_network else None,
        value_estimation_loss_coef=value_estimation_loss_coef,
        gamma=gamma,
        optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate),
        normalize_returns=normalize_returns,
        gradient_clipping=gradient_clipping,
        debug_summaries=debug_summaries,
        summarize_grads_and_vars=summarize_grads_and_vars,
        train_step_counter=global_step)

    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        tf_agent.collect_data_spec,
        batch_size=tf_env.batch_size,
        max_length=replay_buffer_capacity)

    tf_agent.initialize()

    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_metrics.AverageReturnMetric(),
        tf_metrics.AverageEpisodeLengthMetric(),
    ]

    eval_policy = tf_agent.policy
    collect_policy = tf_agent.collect_policy

    collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
        tf_env,
        collect_policy,
        observers=[replay_buffer.add_batch] + train_metrics,
        num_episodes=collect_episodes_per_iteration)

    def train_step():
      experience = replay_buffer.gather_all()
      return tf_agent.train(experience)

    if use_tf_functions:
      # To speed up collect use TF function.
      collect_driver.run = common.function(collect_driver.run)
      # To speed up train use TF function.
      tf_agent.train = common.function(tf_agent.train)
      train_step = common.function(train_step)

    # Compute evaluation metrics.
    metrics = metric_utils.eager_compute(
        eval_metrics,
        eval_tf_env,
        eval_policy,
        num_episodes=num_eval_episodes,
        train_step=global_step,
        summary_writer=eval_summary_writer,
        summary_prefix='Metrics',
    )
    # TODO(b/126590894): Move this functionality into eager_compute_summaries
    if eval_metrics_callback is not None:
      eval_metrics_callback(metrics, global_step.numpy())

    time_step = None
    policy_state = collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_step.numpy()
    time_acc = 0

    for _ in range(num_iterations):
      start_time = time.time()
      time_step, policy_state = collect_driver.run(
          time_step=time_step,
          policy_state=policy_state,
      )
      total_loss = train_step()
      replay_buffer.clear()
      time_acc += time.time() - start_time

      global_step_val = global_step.numpy()
      if global_step_val % log_interval == 0:
        logging.info('step = %d, loss = %f', global_step_val, total_loss.loss)
        steps_per_sec = (global_step_val - timed_at_step) / time_acc
        logging.info('%.3f steps/sec', steps_per_sec)
        tf.compat.v2.summary.scalar(
            name='global_steps_per_sec', data=steps_per_sec, step=global_step)
        timed_at_step = global_step_val
        time_acc = 0

      for train_metric in train_metrics:
        train_metric.tf_summaries(
            train_step=global_step, step_metrics=train_metrics[:2])

      if global_step_val % eval_interval == 0:
        metrics = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        # TODO(b/126590894): Move this functionality into
        # eager_compute_summaries.
        if eval_metrics_callback is not None:
          eval_metrics_callback(metrics, global_step_val)
Example #3
0
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=1000,
        # TODO(b/127576522): rename to policy_fc_layers.
        actor_fc_layers=(100, ),
        # Params for collect
        collect_episodes_per_iteration=2,
        replay_buffer_capacity=2000,
        # Params for train
        learning_rate=1e-3,
        gradient_clipping=None,
        normalize_returns=True,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=100,
        # Params for checkpoints, summaries, and logging
        train_checkpoint_interval=100,
        policy_checkpoint_interval=100,
        rb_checkpoint_interval=200,
        log_interval=100,
        summary_interval=100,
        summaries_flush_secs=1,
        debug_summaries=True,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for Reinforce."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        py_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        py_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        eval_py_env = suite_gym.load(env_name)
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))

        # TODO(b/127870767): Handle distributions without gin.
        actor_net = actor_distribution_network.ActorDistributionNetwork(
            tf_env.time_step_spec().observation,
            tf_env.action_spec(),
            fc_layer_params=actor_fc_layers)

        tf_agent = reinforce_agent.ReinforceAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            actor_network=actor_net,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=learning_rate),
            normalize_returns=normalize_returns,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        eval_py_policy = py_tf_policy.PyTFPolicy(tf_agent.policy)

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        collect_policy = tf_agent.collect_policy

        collect_op = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_episodes=collect_episodes_per_iteration).run()

        experience = replay_buffer.gather_all()
        train_op = tf_agent.train(experience)
        clear_rb_op = replay_buffer.clear()

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=tf_agent.policy,
                                                  global_step=global_step)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        summary_ops = []
        for train_metric in train_metrics:
            summary_ops.append(
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2]))

        with eval_summary_writer.as_default(), \
             tf.compat.v2.summary.record_if(True):
            for eval_metric in eval_metrics:
                eval_metric.tf_summaries(train_step=global_step)

        init_agent_op = tf_agent.initialize()

        with tf.compat.v1.Session() as sess:
            # Initialize the graph.
            train_checkpointer.initialize_or_restore(sess)
            rb_checkpointer.initialize_or_restore(sess)
            # TODO(b/126239733): Remove once Periodically can be saved.
            common.initialize_uninitialized_variables(sess)

            sess.run(init_agent_op)
            sess.run(train_summary_writer.init())
            sess.run(eval_summary_writer.init())

            # Compute evaluation metrics.
            global_step_call = sess.make_callable(global_step)
            global_step_val = global_step_call()
            metric_utils.compute_summaries(
                eval_metrics,
                eval_py_env,
                eval_py_policy,
                num_episodes=num_eval_episodes,
                global_step=global_step_val,
                callback=eval_metrics_callback,
            )

            collect_call = sess.make_callable(collect_op)
            train_step_call = sess.make_callable([train_op, summary_ops])
            clear_rb_call = sess.make_callable(clear_rb_op)

            timed_at_step = global_step_call()
            time_acc = 0
            steps_per_second_ph = tf.compat.v1.placeholder(
                tf.float32, shape=(), name='steps_per_sec_ph')
            steps_per_second_summary = tf.compat.v2.summary.scalar(
                name='global_steps_per_sec',
                data=steps_per_second_ph,
                step=global_step)

            for _ in range(num_iterations):
                start_time = time.time()
                collect_call()
                total_loss, _ = train_step_call()
                clear_rb_call()
                time_acc += time.time() - start_time
                global_step_val = global_step_call()

                if global_step_val % log_interval == 0:
                    logging.info('step = %d, loss = %f', global_step_val,
                                 total_loss.loss)
                    steps_per_sec = (global_step_val -
                                     timed_at_step) / time_acc
                    logging.info('%.3f steps/sec', steps_per_sec)
                    sess.run(steps_per_second_summary,
                             feed_dict={steps_per_second_ph: steps_per_sec})
                    timed_at_step = global_step_val
                    time_acc = 0

                if global_step_val % train_checkpoint_interval == 0:
                    train_checkpointer.save(global_step=global_step_val)

                if global_step_val % policy_checkpoint_interval == 0:
                    policy_checkpointer.save(global_step=global_step_val)

                if global_step_val % rb_checkpoint_interval == 0:
                    rb_checkpointer.save(global_step=global_step_val)

                if global_step_val % eval_interval == 0:
                    metric_utils.compute_summaries(
                        eval_metrics,
                        eval_py_env,
                        eval_py_policy,
                        num_episodes=num_eval_episodes,
                        global_step=global_step_val,
                        callback=eval_metrics_callback,
                    )
Example #4
0
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=100000,
        fc_layer_params=(100, ),
        # Params for collect
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=64,
        learning_rate=1e-3,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for summaries and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.contrib.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.contrib.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    with tf.contrib.summary.record_summaries_every_n_global_steps(
            summary_interval):

        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))

        trajectory_spec = trajectory.from_transition(
            time_step=tf_env.time_step_spec(),
            action_step=policy_step.PolicyStep(action=tf_env.action_spec()),
            next_time_step=tf_env.time_step_spec())
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=trajectory_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        q_net = q_network.QNetwork(tf_env.time_step_spec().observation,
                                   tf_env.action_spec(),
                                   fc_layer_params=fc_layer_params)

        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            # TODO(kbanoop): Decay epsilon based on global step, cf. cl/188907839
            epsilon_greedy=epsilon_greedy,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate),
            td_errors_loss_fn=dqn_agent.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars)

        tf_agent.initialize()
        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        eval_policy = tf_agent.policy()
        collect_policy = tf_agent.collect_policy()

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        global_step = tf.train.get_or_create_global_step()

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())

        # Collect initial replay data.
        tf.logging.info(
            'Initializing replay buffer by collecting experience for %d steps with '
            'a random policy.' % initial_collect_steps)
        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch],
            num_steps=initial_collect_steps).run()

        metrics = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(metrics, global_step.numpy())

        time_step = None
        policy_state = ()

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=2).prefetch(3)
        iterator = iter(dataset)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                experience, _ = next(iterator)
                train_loss = tf_agent.train(experience,
                                            train_step_counter=global_step)
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                tf.logging.info('step = %d, loss = %f', global_step.numpy(),
                                train_loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                tf.logging.info('%.3f steps/sec' % steps_per_sec)
                tf.contrib.summary.scalar(name='global_steps/sec',
                                          tensor=steps_per_sec)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(step_metrics=train_metrics[:2])

            if global_step.numpy() % eval_interval == 0:
                metrics = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(metrics, global_step.numpy())
        return train_loss
Example #5
0
 def test_custom_max_steps(self):
     env = suite_gym.load('CartPole-v1', max_episode_steps=5)
     self.assertIsInstance(env, py_environment.PyEnvironment)
     self.assertIsInstance(env, wrappers.TimeLimit)
     self.assertEqual(5, env._duration)
 def gen_env(self):
     display = suite_gym.load(self.name)
     env = tf_py_environment.TFPyEnvironment(display)
     return env, display
Example #7
0
batch_size = 64  # @param {type:"integer"}
learning_rate = 1e-3  # @param {type:"number"}
log_interval = 200  # @param {type:"integer"}

num_eval_episodes = 10  # @param {type:"integer"}
eval_interval = 1000  # @param {type:"integer"}
"""## Environment

In Reinforcement Learning (RL), an environment represents the task or problem to be solved. Standard environments can be created in TF-Agents using `tf_agents.environments` suites. TF-Agents has suites for loading environments from sources such as the OpenAI Gym, Atari, and DM Control.

Load the CartPole environment from the OpenAI Gym suite.
"""

env_name = 'CartPole-v0'
env = suite_gym.load(env_name)
"""You can render this environment to see how it looks. A free-swinging pole is attached to a cart.  The goal is to move the cart right or left in order to keep the pole pointing up."""

#@test {"skip": true}
env.reset()
PIL.Image.fromarray(env.render())
"""The `environment.step` method takes an `action` in the environment and returns a `TimeStep` tuple containing the next observation of the environment and the reward for the action.

The `time_step_spec()` method returns the specification for the `TimeStep` tuple. Its `observation` attribute shows the shape of observations, the data types, and the ranges of allowed values. The `reward` attribute shows the same details for the reward.
"""

print('Observation Spec:')
print(env.time_step_spec().observation)

print('Reward Spec:')
print(env.time_step_spec().reward)
Example #8
0
 def test_load_adds_time_limit_steps(self):
     env = suite_gym.load('CartPole-v1')
     self.assertIsInstance(env, py_environment.PyEnvironment)
     self.assertIsInstance(env, wrappers.TimeLimit)
def main():
    parser = argparse.ArgumentParser()

    ## Essential parameters
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model stats and checkpoints will be written."
    )
    parser.add_argument("--env",
                        default=None,
                        type=str,
                        required=True,
                        help="The environment to train the agent on")
    parser.add_argument("--approx_env_boundaries",
                        default=False,
                        type=bool,
                        help="Whether to get the env boundaries approximately")
    parser.add_argument("--max_horizon", default=5, type=int)
    parser.add_argument("--atari",
                        default=False,
                        type=bool,
                        help="Gets some data Types correctly")

    ##agent parameters
    parser.add_argument("--reward_scale_factor", default=1.0, type=float)
    parser.add_argument("--debug_summaries", default=False, type=bool)
    parser.add_argument("--summarize_grads_and_vars", default=False, type=bool)

    ##transformer parameters
    parser.add_argument("--d_model", default=64, type=int)
    parser.add_argument("--num_layers", default=3, type=int)
    parser.add_argument("--dff", default=256, type=int)

    ##Training parameters
    parser.add_argument('--num_iterations',
                        type=int,
                        default=150000,
                        help="steps in the env")
    parser.add_argument('--num_iparallel',
                        type=int,
                        default=1,
                        help="how many envs should run in parallel")
    parser.add_argument("--collect_steps_per_iteration", default=1, type=int)
    parser.add_argument("--train_steps_per_iteration", default=1, type=int)

    ## Other parameters
    parser.add_argument("--num_eval_episodes", default=10, type=int)
    parser.add_argument("--eval_interval", default=1000, type=int)
    parser.add_argument("--log_interval", default=1000, type=int)
    parser.add_argument("--summary_interval", default=1000, type=int)
    parser.add_argument("--run_graph_mode", default=True, type=bool)
    parser.add_argument("--checkpoint_interval", default=10000, type=int)
    parser.add_argument("--summary_flush", default=10,
                        type=int)  #what does this exactly do?

    # HP opt params
    parser.add_argument("--doubleQ",
                        default=True,
                        type=bool,
                        help="Whether to use a  DoubleQ agent")
    parser.add_argument("--custom_last_layer", default=False, type=bool)
    parser.add_argument("--custom_layer_init", default=1, type=float)
    parser.add_argument("--initial_collect_steps", default=500, type=int)
    parser.add_argument("--loss_function",
                        default='element_wise_squared_loss',
                        type=str)
    parser.add_argument("--num_heads", default=4, type=int)
    parser.add_argument("--normalize_env", default=False, type=bool)
    parser.add_argument('--custom_lr_schedule',
                        default="No",
                        type=str,
                        help="whether to use a custom LR schedule")
    parser.add_argument("--epsilon_greedy", default=0.1, type=float)
    parser.add_argument("--target_update_period", default=10, type=int)
    parser.add_argument(
        "--rate", default=0.1, type=float
    )  # dropout rate  (might be not used depending on the q network)  #Setting this to 0.0 somehow break the code. Not relevant tho just select a network without dropout
    parser.add_argument("--gradient_clipping", default=True, type=bool)
    parser.add_argument("--replay_buffer_max_length", default=100000, type=int)
    parser.add_argument("--batch_size", default=32, type=int)
    parser.add_argument("--learning_rate", default=1e-5, type=float)
    parser.add_argument("--encoder_type",
                        default=3,
                        type=int,
                        help="Which Type of encoder is used for the model")
    parser.add_argument("--layer_type",
                        default=3,
                        type=int,
                        help="Which Type of layer is used for the encoder")
    parser.add_argument("--target_update_tau", default=1, type=float)
    parser.add_argument("--gamma", default=0.95, type=float)

    args = parser.parse_args()
    # List of encoder modules which we can use to change encoder based on a variable
    global_step = tf.compat.v1.train.get_or_create_global_step()

    baseEnv = gym.make(args.env)
    env = suite_gym.load(args.env)
    eval_env = suite_gym.load(args.env)
    if args.normalize_env == True:
        env = NormalizeWrapper(env, args.approx_env_boundaries, args.env)
        eval_env = NormalizeWrapper(eval_env, args.approx_env_boundaries,
                                    args.env)
    env = PyhistoryWrapper(env, args.max_horizon, args.atari)
    eval_env = PyhistoryWrapper(eval_env, args.max_horizon, args.atari)
    tf_env = tf_py_environment.TFPyEnvironment(env)
    eval_tf_env = tf_py_environment.TFPyEnvironment(eval_env)

    q_net = QTransformer(tf_env.observation_spec(),
                         baseEnv.action_space.n,
                         num_layers=args.num_layers,
                         d_model=args.d_model,
                         num_heads=args.num_heads,
                         dff=args.dff,
                         rate=args.rate,
                         encoderType=args.encoder_type,
                         enc_layer_type=args.layer_type,
                         max_horizon=args.max_horizon,
                         custom_layer=args.custom_layer_init,
                         custom_last_layer=args.custom_last_layer)

    if args.custom_lr_schedule == "Transformer":  # builds a lr schedule according to the original usage for the transformer
        learning_rate = CustomSchedule(args.d_model,
                                       int(args.num_iterations / 10))
        optimizer = tf.keras.optimizers.Adam(learning_rate,
                                             beta_1=0.9,
                                             beta_2=0.98,
                                             epsilon=1e-9)

    elif args.custom_lr_schedule == "Transformer_low":  # builds a lr schedule according to the original usage for the transformer
        learning_rate = CustomSchedule(
            int(args.d_model / 2),
            int(args.num_iterations /
                10))  # --> same schedule with lower general lr
        optimizer = tf.keras.optimizers.Adam(learning_rate,
                                             beta_1=0.9,
                                             beta_2=0.98,
                                             epsilon=1e-9)

    elif args.custom_lr_schedule == "Linear":
        lrs = LinearCustomSchedule(learning_rate, args.num_iterations)
        optimizer = tf.keras.optimizers.Adam(lrs,
                                             beta_1=0.9,
                                             beta_2=0.98,
                                             epsilon=1e-9)

    else:
        optimizer = tf.compat.v1.train.AdamOptimizer(
            learning_rate=args.learning_rate)

    if args.loss_function == "element_wise_huber_loss":
        lf = element_wise_huber_loss
    elif args.loss_function == "element_wise_squared_loss":
        lf = element_wise_squared_loss

    if args.doubleQ == False:  # global step count
        agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            epsilon_greedy=args.epsilon_greedy,
            #boltzmann_temperature = 1,
            target_update_tau=args.target_update_tau,
            target_update_period=args.target_update_period,
            td_errors_loss_fn=lf,
            optimizer=optimizer,
            gamma=args.gamma,
            reward_scale_factor=args.reward_scale_factor,
            gradient_clipping=args.gradient_clipping,
            debug_summaries=args.debug_summaries,
            summarize_grads_and_vars=args.summarize_grads_and_vars,
            train_step_counter=global_step)
    else:
        agent = dqn_agent.DdqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            epsilon_greedy=args.epsilon_greedy,
            #boltzmann_temperature = 1,
            target_update_tau=args.target_update_tau,
            td_errors_loss_fn=lf,
            target_update_period=args.target_update_period,
            optimizer=optimizer,
            gamma=args.gamma,
            reward_scale_factor=args.reward_scale_factor,
            gradient_clipping=args.gradient_clipping,
            debug_summaries=args.debug_summaries,
            summarize_grads_and_vars=args.summarize_grads_and_vars,
            train_step_counter=global_step)
    agent.initialize()

    count_weights(q_net)

    train_eval(root_dir=args.output_dir,
               tf_env=tf_env,
               eval_tf_env=eval_tf_env,
               agent=agent,
               num_iterations=args.num_iterations,
               initial_collect_steps=args.initial_collect_steps,
               collect_steps_per_iteration=args.collect_steps_per_iteration,
               replay_buffer_capacity=args.replay_buffer_max_length,
               train_steps_per_iteration=args.train_steps_per_iteration,
               batch_size=args.batch_size,
               use_tf_functions=args.run_graph_mode,
               num_eval_episodes=args.num_eval_episodes,
               eval_interval=args.eval_interval,
               train_checkpoint_interval=args.checkpoint_interval,
               policy_checkpoint_interval=args.checkpoint_interval,
               rb_checkpoint_interval=args.checkpoint_interval,
               log_interval=args.log_interval,
               summary_interval=args.summary_interval,
               summaries_flush_secs=args.summary_flush)

    pickle.dump(args, open(args.output_dir + "/training_args.p", "wb"))
    print("Successfully trained and evaluation.")
Example #10
0
    agentsDict, nameDict, networkDict, numAgents, loadingSeriesHP, chargingSeriesEV, \
    genSeriesPV, genSeriesWind, loadingSeriesDSM = util.agentsInit(alg, startDay, endDay, numAgentsEachType=1)
    nameList = [agent.id for agent in agentsDict.values()]
    typeList = [agent.type for agent in agentsDict.values()]
    grid = Grid(numAgents, nameList, loadingSeriesHP, chargingSeriesEV, genSeriesPV, genSeriesWind, loadingSeriesDSM,
                         numCPU=20)

    sm = SpotMarket()
    agentsList = [obj for name, obj in agentsDict.items()]
    sm.addParticipants(agentsList)
    dso = DSO(grid, startDay, endDay)
    dso.addflexAgents(agentsList)

    """load the train Gym environment"""
    env = suite_gym.load("gym_LocalFlexMarketEnv:LocalFlexMarketEnv-v0",
                         gym_kwargs={'SpotMarket': sm, 'DSO': dso, 'alg': alg})
    env.gym.startDay = startDay
    env.gym.endDay = endDay

    env.reset()
    train_env = tf_py_environment.TFPyEnvironment(env)

    agents = train_env.pyenv.envs[0].gym.agents
    if not os.path.exists("../results/" + alg):
        os.makedirs("../results/" + alg)
    filename = "../results/" + alg + "/agentList.pkl"
    with open(filename, "wb") as f:
        pickle.dump(nameList, f)

    """Training parameters"""
    num_iterations = 1
Example #11
0
def train_eval(
        root_dir,
        env_name='gym_orbital_system:earth-v0',
        num_iterations=500000,
        actor_fc_layers=(400, 1000, 1000, 1000, 1000, 400),
        critic_obs_fc_layers=(
            400,
            1000,
            1000,
            400,
        ),
        critic_action_fc_layers=None,
        critic_joint_fc_layers=(400, ),
        # Params for collect
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        replay_buffer_capacity=100000,
        exploration_noise_std=0.1,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=64,
        actor_update_period=2,
        actor_learning_rate=1e-4,
        critic_learning_rate=1e-3,
        td_errors_loss_fn=tf.compat.v1.losses.huber_loss,
        gamma=0.995,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=10000,
        # Params for checkpoints, summaries, and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for TD3."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))

        actor_net = actor_network.ActorNetwork(
            tf_env.time_step_spec().observation,
            tf_env.action_spec(),
            fc_layer_params=actor_fc_layers,
        )

        critic_net_input_specs = (tf_env.time_step_spec().observation,
                                  tf_env.action_spec())

        critic_net = critic_network.CriticNetwork(
            critic_net_input_specs,
            observation_fc_layer_params=critic_obs_fc_layers,
            action_fc_layer_params=critic_action_fc_layers,
            joint_fc_layer_params=critic_joint_fc_layers,
        )

        tf_agent = td3_agent.Td3Agent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            actor_network=actor_net,
            critic_network=critic_net,
            actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=actor_learning_rate),
            critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=critic_learning_rate),
            exploration_noise_std=exploration_noise_std,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            actor_update_period=actor_update_period,
            td_errors_loss_fn=td_errors_loss_fn,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step,
        )
        tf_agent.initialize()

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch],
            num_steps=initial_collect_steps)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        if use_tf_functions:
            initial_collect_driver.run = common.function(
                initial_collect_driver.run)
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        # Collect initial replay data.
        logging.info(
            'Initializing replay buffer by collecting experience for %d steps with '
            'a random policy.', initial_collect_steps)
        initial_collect_driver.run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=2).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)

        return train_loss
Example #12
0
from utils import compute_avg_return

from tf_agents.environments import suite_gym

from tf_agents.policies import random_tf_policy

from tf_agents.environments import tf_py_environment

from tf_agents.metrics.tf_metrics import AverageReturnMetric

from drivers import TFRenderDriver

if __name__ == '__main__':

    py_env = suite_gym.load('CartPole-v0')
    py_env.render(mode="human")
    env = tf_py_environment.TFPyEnvironment(py_env)
    policy = random_tf_policy.RandomTFPolicy(env.time_step_spec(),
                                             env.action_spec())

    average = AverageReturnMetric()
    metrics_observer = [average]
    metrics_driver = TFRenderDriver(env,
                                    policy,
                                    metrics_observer,
                                    max_episodes=5)

    time_step = env.reset()
    policy_state = policy.get_initial_state(batch_size=1)

    average.reset()
Example #13
0
# num_iterations = 10000 # @param {type:"integer"}

initial_collect_steps = 1000  # @param {type:"integer"} 
collect_steps_per_iteration = 1  # @param {type:"integer"}
replay_buffer_max_length = 100000  # @param {type:"integer"}

batch_size = 64  # @param {type:"integer"}
learning_rate = 1e-3  # @param {type:"number"}
log_interval = 200  # @param {type:"integer"}

num_eval_episodes = 10  # @param {type:"integer"}
eval_interval = 1000  # @param {type:"integer"}


env_name = 'CartPole-v0'
env = suite_gym.load(env_name)

#@test {"skip": true}
env.reset()
# PIL.Image.fromarray(env.render())


print('\nObservation Spec:')
print(env.time_step_spec().observation)
print('\nminimum')
print(*env.time_step_spec().observation.minimum,sep='\n')
print('\nmaximum')
print(*env.time_step_spec().observation.maximum,sep='\n')


print('\nReward Spec:')
Example #14
0
def make_env():
    return tf_py_environment.TFPyEnvironment(suite_gym.load('CartPole-v0'))
Example #15
0
from tf_agents.drivers import dynamic_step_driver
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import q_network
from tf_agents.policies import random_tf_policy, epsilon_greedy_policy, random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common

from Environment import BreakoutEnv

env_name = 'Breakout-v0'

train_py_env = BreakoutEnv(suite_gym.load(env_name))
train_env = tf_py_environment.TFPyEnvironment(train_py_env)

eval_py_env = BreakoutEnv(suite_gym.load(env_name))
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

learning_rate = 1e-5  # @param {type:"number"}
replay_buffer_max_length = 10000  # @param {type:"integer"}

num_iterations = 10000  # @param {type:"integer"}

initial_collect_steps = 2000  # @param {type:"integer"}
collect_steps_per_iteration = 1  # @param {type:"integer"}

batch_size = 32  # @param {type:"integer"}
log_interval = 200  # @param {type:"integer"}
Example #16
0
def train_eval(
        root_dir,
        env_name='MaskedCartPole-v0',
        num_iterations=100000,
        input_fc_layer_params=(50, ),
        lstm_size=(20, ),
        output_fc_layer_params=(20, ),
        train_sequence_length=10,
        # Params for collect
        initial_collect_steps=50,
        collect_episodes_per_iteration=1,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=10,
        batch_size=128,
        learning_rate=1e-3,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for summaries and logging
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        log_interval=100,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        py_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        py_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        eval_py_env = suite_gym.load(env_name)
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))

        q_net = q_rnn_network.QRnnNetwork(
            tf_env.time_step_spec().observation,
            tf_env.action_spec(),
            input_fc_layer_params=input_fc_layer_params,
            lstm_size=lstm_size,
            output_fc_layer_params=output_fc_layer_params)

        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=learning_rate),
            # TODO(kbanoop): Decay epsilon based on global step, cf. cl/188907839
            epsilon_greedy=epsilon_greedy,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            td_errors_loss_fn=dqn_agent.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        eval_py_policy = py_tf_policy.PyTFPolicy(tf_agent.policy)

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())
        initial_collect_op = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_episodes=initial_collect_steps).run()

        collect_policy = tf_agent.collect_policy
        collect_op = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_episodes=collect_episodes_per_iteration).run()

        # Need extra step to generate transitions of train_sequence_length.
        # Dataset generates trajectories with shape [BxTx...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=train_sequence_length +
                                           1).prefetch(3)

        iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
        experience, _ = iterator.get_next()
        loss_info = tf_agent.train(experience=experience)

        train_checkpointer = common_utils.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common_utils.Checkpointer(
            ckpt_dir=os.path.join(train_dir, 'policy'),
            policy=tf_agent.policy,
            global_step=global_step)
        rb_checkpointer = common_utils.Checkpointer(
            ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
            max_to_keep=1,
            replay_buffer=replay_buffer)

        for train_metric in train_metrics:
            train_metric.tf_summaries(step_metrics=train_metrics[:2])

        with eval_summary_writer.as_default(), \
             tf.compat.v2.summary.record_if(True):
            for eval_metric in eval_metrics:
                eval_metric.tf_summaries()

        init_agent_op = tf_agent.initialize()

        with tf.compat.v1.Session() as sess:
            sess.run(train_summary_writer.init())
            sess.run(eval_summary_writer.init())
            # Initialize the graph.
            train_checkpointer.initialize_or_restore(sess)
            rb_checkpointer.initialize_or_restore(sess)
            sess.run(iterator.initializer)
            # TODO(sguada) Remove once Periodically can be saved.
            common_utils.initialize_uninitialized_variables(sess)

            sess.run(init_agent_op)
            logging.info('Collecting initial experience.')
            sess.run(initial_collect_op)

            # Compute evaluation metrics.
            global_step_val = sess.run(global_step)
            metric_utils.compute_summaries(
                eval_metrics,
                eval_py_env,
                eval_py_policy,
                num_episodes=num_eval_episodes,
                global_step=global_step_val,
                callback=eval_metrics_callback,
                log=True,
            )

            collect_call = sess.make_callable(collect_op)
            train_step_call = sess.make_callable(loss_info)
            global_step_call = sess.make_callable(global_step)

            timed_at_step = global_step_call()
            time_acc = 0
            steps_per_second_ph = tf.compat.v1.placeholder(
                tf.float32, shape=(), name='steps_per_sec_ph')
            steps_per_second_summary = tf.contrib.summary.scalar(
                name='global_steps/sec', tensor=steps_per_second_ph)

            for _ in range(num_iterations):
                # Train/collect/eval.
                start_time = time.time()
                collect_call()
                for _ in range(train_steps_per_iteration):
                    loss_info_value = train_step_call()
                time_acc += time.time() - start_time
                global_step_val = global_step_call()

                if global_step_val % log_interval == 0:
                    logging.info('step = %d, loss = %f', global_step_val,
                                 loss_info_value.loss)
                    steps_per_sec = (global_step_val -
                                     timed_at_step) / time_acc
                    logging.info('%.3f steps/sec', steps_per_sec)
                    sess.run(steps_per_second_summary,
                             feed_dict={steps_per_second_ph: steps_per_sec})
                    timed_at_step = global_step_val
                    time_acc = 0

                if global_step_val % train_checkpoint_interval == 0:
                    train_checkpointer.save(global_step=global_step_val)

                if global_step_val % policy_checkpoint_interval == 0:
                    policy_checkpointer.save(global_step=global_step_val)

                if global_step_val % rb_checkpoint_interval == 0:
                    rb_checkpointer.save(global_step=global_step_val)

                if global_step_val % eval_interval == 0:
                    metric_utils.compute_summaries(
                        eval_metrics,
                        eval_py_env,
                        eval_py_policy,
                        num_episodes=num_eval_episodes,
                        global_step=global_step_val,
                        log=True,
                        callback=eval_metrics_callback,
                    )
Example #17
0
def load_multiple_mugs_env(
    universe,
    action_mode,
    env_name=None,
    render_size=128,
    observation_render_size=64,
    observations_whitelist=None,
    action_repeat=1,
    num_train_tasks=30,
    num_eval_tasks=10,
    eval_on_holdout_tasks=True,
    return_multiple_tasks=False,
    model_input=None,
    auto_reset_task_each_episode=False,
):

    ### HARDCODED
    # temporary sanity
    assert env_name == 'SawyerShelfMT-v0'
    assert return_multiple_tasks
    assert universe == 'gym'

    # get eval and train tasks by loading a sample env
    sample_env = suite_mujoco.load(env_name)
    # train env
    train_tasks = sample_env.init_tasks(num_tasks=num_train_tasks,
                                        is_eval_env=False)
    # eval env
    eval_tasks = sample_env.init_tasks(num_tasks=num_eval_tasks,
                                       is_eval_env=eval_on_holdout_tasks)
    del sample_env

    print("train weights", train_tasks)
    print("eval weights", eval_tasks)
    if env_name == 'SawyerShelfMT-v0':
        from meld.environments.envs.shelf.assets.generate_sawyer_shelf_xml import generate_and_save_xml_file
    else:
        raise NotImplementedError

    train_xml_path = generate_and_save_xml_file(train_tasks,
                                                action_mode,
                                                is_eval=False)
    eval_xml_path = generate_and_save_xml_file(eval_tasks,
                                               action_mode,
                                               is_eval=True)

    ### train env
    # get wrappers
    wrappers = get_wrappers(device_id=0,
                            model_input=model_input,
                            render_size=render_size,
                            observation_render_size=observation_render_size,
                            observations_whitelist=observations_whitelist)
    # load env
    gym_kwargs = {"action_mode": action_mode, "xml_path": train_xml_path}
    py_env = suite_gym.load(env_name,
                            gym_env_wrappers=wrappers,
                            gym_kwargs=gym_kwargs)
    if action_repeat > 1:
        py_env = wrappers.ActionRepeat(py_env, action_repeat)

    ### eval env
    # get wrappers
    wrappers = get_wrappers(device_id=1,
                            model_input=model_input,
                            render_size=render_size,
                            observation_render_size=observation_render_size,
                            observations_whitelist=observations_whitelist)
    # load env
    gym_kwargs = {"action_mode": action_mode, "xml_path": eval_xml_path}
    eval_py_env = suite_gym.load(env_name,
                                 gym_env_wrappers=wrappers,
                                 gym_kwargs=gym_kwargs)
    eval_py_env = video_wrapper.VideoWrapper(eval_py_env)
    if action_repeat > 1:
        eval_py_env = wrappers.ActionRepeat(eval_py_env, action_repeat)

    py_env.assign_tasks(train_tasks)
    eval_py_env.assign_tasks(eval_tasks)

    # set task list and reset variable to true
    if auto_reset_task_each_episode:
        py_env.wrapped_env().set_auto_reset_task(train_tasks)
        eval_py_env.wrapped_env().set_auto_reset_task(eval_tasks)

    return py_env, eval_py_env, train_tasks, eval_tasks
Example #18
0
 def test_load_disable_step_limit(self):
     env = suite_gym.load('CartPole-v1', max_episode_steps=0)
     self.assertIsInstance(env, py_environment.PyEnvironment)
     self.assertNotIsInstance(env, wrappers.TimeLimit)
Example #19
0
def load_environments(
    universe,
    action_mode,
    env_name=None,
    render_size=128,
    observation_render_size=64,
    observations_whitelist=None,
    action_repeat=1,
    num_train_tasks=30,
    num_eval_tasks=10,
    eval_on_holdout_tasks=True,
    return_multiple_tasks=False,
    model_input=None,
    auto_reset_task_each_episode=False,
):
    """
  Loads train and eval environments.
  """

    assert universe == 'gym'
    tf.compat.v1.logging.info('Using environment {} from {} universe.'.format(
        env_name, universe))

    is_shelf_env = (env_name == 'SawyerShelfMT-v0') or (env_name
                                                        == 'SawyerShelfMT-v2')
    if is_shelf_env:
        return load_multiple_mugs_env(
            universe,
            action_mode,
            env_name=env_name,
            observations_whitelist=['state', 'pixels', 'env_info'],
            action_repeat=action_repeat,
            num_train_tasks=num_train_tasks,
            num_eval_tasks=num_eval_tasks,
            eval_on_holdout_tasks=eval_on_holdout_tasks,
            return_multiple_tasks=True,
        )

    # select observation wrapper
    # puts either state or image into the 'pixels' location
    use_observation_wrapper = gym_wrappers.PixelObservationsGymWrapper
    if model_input is not None:
        if model_input == 'state':
            use_observation_wrapper = gym_wrappers.PixelObservationsGymWrapperState

    # wrappers for train env (put on GPU 0)
    gym_env_wrappers = [
        functools.partial(gym_wrappers.RenderGymWrapper,
                          render_kwargs={
                              'height': render_size,
                              'width': render_size,
                              'device_id': 0
                          }),
        functools.partial(use_observation_wrapper,
                          observations_whitelist=observations_whitelist,
                          render_kwargs={
                              'height': observation_render_size,
                              'width': observation_render_size,
                              'device_id': 0
                          })
    ]

    # wrappers for eval env (put on GPU 1)
    eval_gym_env_wrappers = [
        functools.partial(gym_wrappers.RenderGymWrapper,
                          render_kwargs={
                              'height': render_size,
                              'width': render_size,
                              'device_id': 1
                          }),
        # segfaults if the device is the same as train env
        functools.partial(use_observation_wrapper,
                          observations_whitelist=observations_whitelist,
                          render_kwargs={
                              'height': observation_render_size,
                              'width': observation_render_size,
                              'device_id': 1
                          })
    ]  # segfaults if the device is the same as train env

    # create train/eval envs
    gym_kwargs = {"action_mode": action_mode}
    py_env = suite_gym.load(env_name,
                            gym_env_wrappers=gym_env_wrappers,
                            gym_kwargs=gym_kwargs)
    eval_py_env = suite_gym.load(env_name,
                                 gym_env_wrappers=eval_gym_env_wrappers,
                                 gym_kwargs=gym_kwargs)

    # set action mode
    py_env.wrapped_env().override_action_mode(action_mode)
    eval_py_env.wrapped_env().override_action_mode(action_mode)

    # video wrapper for eval saving
    eval_py_env = video_wrapper.VideoWrapper(eval_py_env)

    # action repeat
    if action_repeat > 1:
        py_env = wrappers.ActionRepeat(py_env, action_repeat)
        eval_py_env = wrappers.ActionRepeat(eval_py_env, action_repeat)

    ###############################
    # get possible tasks
    ###############################

    if return_multiple_tasks:
        # set env as being "train" or "eval"
        # used for defining the tasks used in the envs
        eval_env_is_true_eval = False
        if eval_on_holdout_tasks:
            eval_env_is_true_eval = True

        # train env
        train_tasks = py_env.init_tasks(num_tasks=num_train_tasks,
                                        is_eval_env=False)
        # eval env
        eval_tasks = eval_py_env.init_tasks(num_tasks=num_eval_tasks,
                                            is_eval_env=eval_env_is_true_eval)

        # set task list and reset variable to true
        if auto_reset_task_each_episode:
            py_env.wrapped_env().set_auto_reset_task(train_tasks)
            eval_py_env.wrapped_env().set_auto_reset_task(eval_tasks)

        return py_env, eval_py_env, train_tasks, eval_tasks
    else:
        return py_env, eval_py_env
Example #20
0
 def testGinConfig(self):
     gin.parse_config_file(
         test_utils.test_src_dir_path('environments/configs/suite_gym.gin'))
     env = suite_gym.load()
     self.assertIsInstance(env, py_environment.PyEnvironment)
     self.assertIsInstance(env, wrappers.TimeLimit)
Example #21
0
collect_steps_per_iteration = 1  # @param
replay_buffer_capacity = 100000  # @param

fc_layer_params = (100,)

batch_size = 64  # @param
learning_rate = 1e-3  # @param
log_interval = 200  # @param

num_eval_episodes = 10  # @param
eval_interval = 1000  # @param

### Environment
#%%

env = suite_gym.load(env_name)

env.reset()
PIL.Image.fromarray(env.render())
print('Observation Spec:')
print(env.time_step_spec().observation)
print('Action Spec:')
print(env.action_spec())

time_step = env.reset()
print('Time step:')
print(time_step)
action = 1
next_time_step = env.step(action)
print('Next time step:')
print(next_time_step)
Example #22
0
from tf_agents.environments import tf_py_environment


num_iterations = 500 # @param {type:"integer"}
collect_episodes_per_iteration = 2 # @param {type:"integer"}
replay_buffer_capacity = 2000 # @param {type:"integer"}

fc_layer_params = (100,)

learning_rate = 1e-3 # @param {type:"number"}
log_interval = 25 # @param {type:"integer"}
num_eval_episodes = 10 # @param {type:"integer"}
eval_interval = 50 # @param {type:"integer"}

#env = gym.make('qch-v0')
env = suite_gym.load('qch-v0')
env2 = suite_gym.load('qch-v0')

train_env = tf_py_environment.TFPyEnvironment(env)
eval_env = tf_py_environment.TFPyEnvironment(env2)

'''
print('Observation Spec:')
print(env.time_step_spec().observation)

print('Observation Spec:')
print(env.time_step_spec())



print('Reward Spec:')
Example #23
0
def train_eval(root_dir,
               env_name="CartPole-v0",
               agent_class=Agent,
               num_iterations=10000,
               initial_collect_steps=1000,
               collect_steps_per_iteration=1,
               epsilon_greedy=0.1,
               replay_buffer_capacity=10000,
               train_steps_per_iteration=1,
               batch_size=32):
    global_step = tf.compat.v1.train.get_or_create_global_step()
    tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
    eval_py_env = suite_gym.load(env_name)
    network = Network(input_tensor_spec=tf_env.time_step_spec().observation,
                      action_spec=tf_env.action_spec())
    tf_agent = agent_class(time_step_spec=tf_env.time_step_spec(),
                           action_spec=tf_env.action_spec(),
                           network=network,
                           optimizer=tf.compat.v1.train.AdamOptimizer(),
                           epsilon_greedy=epsilon_greedy)
    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        tf_agent.collect_data_spec,
        batch_size=tf_env.batch_size,
        max_length=replay_buffer_capacity)
    eval_py_policy = py_tf_policy.PyTFPolicy(tf_agent.policy)
    replay_observer = [replay_buffer.add_batch]
    initial_collect_policy = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())
    initial_collect_op = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        initial_collect_policy,
        observers=replay_observer,
        num_steps=initial_collect_steps).run()
    collect_policy = tf_agent.collect_policy
    collect_op = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy,
        observers=replay_observer,
        num_steps=collect_steps_per_iteration).run()
    dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                       sample_batch_size=batch_size,
                                       num_steps=2).prefetch(3)

    iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
    experience, _ = iterator.get_next()
    train_op = common.function(tf_agent.train)(experience=experience)

    init_agent_op = tf_agent.initialize()

    with tf.compat.v1.Session() as sess:
        sess.run(iterator.initializer)
        common.initialize_uninitialized_variables(sess)

        sess.run(init_agent_op)
        sess.run(initial_collect_op)

        global_step_val = sess.run(global_step)

        collect_call = sess.make_callable(collect_op)
        global_step_call = sess.make_callable(global_step)
        train_step_call = sess.make_callable(train_op)

        for _ in range(num_iterations):
            collect_call()
            for _ in range(train_steps_per_iteration):
                loss_info_value, _ = train_step_call()

            global_step_val = global_step_call()
            logging.info("step = %d, loss = %d", global_step_val,
                         loss_info_value)
Example #24
0
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=100000,
        train_sequence_length=1,
        # Params for QNetwork
        fc_layer_params=(100, ),
        # Params for QRnnNetwork
        input_fc_layer_params=(50, ),
        lstm_size=(20, ),
        output_fc_layer_params=(20, ),

        # Params for collect
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=64,
        learning_rate=1e-3,
        n_step_update=1,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for checkpoints
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        # Params for summaries and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))

        if train_sequence_length != 1 and n_step_update != 1:
            raise NotImplementedError(
                'train_eval does not currently support n-step updates with stateful '
                'networks (i.e., RNNs)')

        action_spec = tf_env.action_spec()
        num_actions = action_spec.maximum - action_spec.minimum + 1

        if train_sequence_length > 1:
            q_net = create_recurrent_network(input_fc_layer_params, lstm_size,
                                             output_fc_layer_params,
                                             num_actions)
        else:
            q_net = create_feedforward_network(fc_layer_params, num_actions)
            train_sequence_length = n_step_update

        # TODO(b/127301657): Decay epsilon based on global step, cf. cl/188907839
        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            epsilon_greedy=epsilon_greedy,
            n_step_update=n_step_update,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=learning_rate),
            td_errors_loss_fn=common.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)
        tf_agent.initialize()

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        if use_tf_functions:
            # To speed up collect use common.function.
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())

        # Collect initial replay data.
        logging.info(
            'Initializing replay buffer by collecting experience for %d steps with '
            'a random policy.', initial_collect_steps)
        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=initial_collect_steps).run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=train_sequence_length +
                                           1).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)
        return train_loss
Example #25
0
    avg_return = total_return / num_episodes
    return avg_return.numpy()[0]


if __name__ == '__main__':
    # En teorĂ­a deberia estar haceindo todo lo que pueda en la GPU no se si lo esta haciendo
    with tf.device("GPU:0"):

        env_name = 'CartPole-v0'

        ATEMP = 0
        NAME = "ATEMP_%i" % ATEMP
        score_prom = None
        writer = tf.summary.create_file_writer("logs\\" + NAME)
        env = suite_gym.load(env_name)

        train_env = tf_py_environment.TFPyEnvironment(env)

        agent_net = build_actor_net(train_env.observation_spec(),
                                    train_env.action_spec())
        value_net = build_value_net(train_env.observation_spec())

        train_step_counter = tf.compat.v2.Variable(0)

        #llamo al agetne que realiza Proximal policy optimization
        agent = tfa.agents.ppo.ppo_agent.PPOAgent(
            time_step_spec=train_env.time_step_spec(),
            action_spec=train_env.action_spec(),
            optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.001),
            actor_net=agent_net,
def do_main(flags):
    encoded_chess = lambda: BoardEncoding(suite_gym.load('Chess-v0'))
    env = make_batched_environment(encoded_chess, flags.parallel_environments)

    actor = get_pendulum_net(env, **flags.flag_values_dict())
    trainAgent(env, actor, **flags.flag_values_dict())
Example #27
0
 def _make_env():
     # function to create a tf environment
     return tf_py_environment.TFPyEnvironment(suite_gym.load('CartPole-v0'))
Example #28
0
    action = env.action_space.sample(
    )  # your agent here (this takes random actions)
    observation, reward, done, info = env.step(action)

env.close()

################################################################################
"""
Another way to run the environment is with the use of TF agents.
"""

from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_tf_policy

py_env = suite_gym.load("gym_ctf:ctf-v0")

env = tf_py_environment.TFPyEnvironment(py_env)

# This creates a randomly initialized policy that the agent will follow.
# Similar to just taking random actions in the environment.
policy = random_tf_policy.RandomTFPolicy(env.time_step_spec(),
                                         env.action_spec())

time_step = env.reset()

while not time_step.is_last():
    action_step = policy.action(time_step)
    time_step = env.step(action_step.action)
    py_env.render('human')  # Default for this render is rgb_array.
Example #29
0
def train_eval(
        root_dir,
        env_name,
        # Training params
        train_sequence_length,
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        num_iterations=100000,
        # RNN params.
        q_network_fn=q_lstm_network,  # defaults to q_lstm_network.
        # Agent params
    epsilon_greedy=0.1,
        batch_size=64,
        learning_rate=1e-3,
        gamma=0.99,
        target_update_tau=0.05,
        target_update_period=5,
        reward_scale_factor=1.0,
        # Replay params
        reverb_port=None,
        replay_capacity=100000,
        # Others
        policy_save_interval=1000,
        eval_interval=1000,
        eval_episodes=10):
    """Trains and evaluates DQN."""

    collect_env = suite_gym.load(env_name)
    eval_env = suite_gym.load(env_name)

    unused_observation_tensor_spec, action_tensor_spec, time_step_tensor_spec = (
        spec_utils.get_tensor_specs(collect_env))

    train_step = train_utils.create_train_step()

    num_actions = action_tensor_spec.maximum - action_tensor_spec.minimum + 1
    q_net = q_network_fn(num_actions=num_actions)

    sequence_length = train_sequence_length + 1
    agent = dqn_agent.DqnAgent(
        time_step_tensor_spec,
        action_tensor_spec,
        q_network=q_net,
        epsilon_greedy=epsilon_greedy,
        # n-step updates aren't supported with RNNs yet.
        n_step_update=1,
        target_update_tau=target_update_tau,
        target_update_period=target_update_period,
        optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=learning_rate),
        td_errors_loss_fn=common.element_wise_squared_loss,
        gamma=gamma,
        reward_scale_factor=reward_scale_factor,
        train_step_counter=train_step)

    table_name = 'uniform_table'
    table = reverb.Table(table_name,
                         max_size=replay_capacity,
                         sampler=reverb.selectors.Uniform(),
                         remover=reverb.selectors.Fifo(),
                         rate_limiter=reverb.rate_limiters.MinSize(1))
    reverb_server = reverb.Server([table], port=reverb_port)
    reverb_replay = reverb_replay_buffer.ReverbReplayBuffer(
        agent.collect_data_spec,
        sequence_length=sequence_length,
        table_name=table_name,
        local_server=reverb_server)
    rb_observer = reverb_utils.ReverbTrajectorySequenceObserver(
        reverb_replay.py_client,
        table_name,
        sequence_length=sequence_length,
        stride_length=1)

    dataset = reverb_replay.as_dataset(num_parallel_calls=3,
                                       sample_batch_size=batch_size,
                                       num_steps=sequence_length).prefetch(3)
    experience_dataset_fn = lambda: dataset

    saved_model_dir = os.path.join(root_dir, learner.POLICY_SAVED_MODEL_DIR)
    env_step_metric = py_metrics.EnvironmentSteps()

    learning_triggers = [
        triggers.PolicySavedModelTrigger(
            saved_model_dir,
            agent,
            train_step,
            interval=policy_save_interval,
            metadata_metrics={triggers.ENV_STEP_METADATA_KEY:
                              env_step_metric}),
        triggers.StepPerSecondLogTrigger(train_step, interval=100),
    ]

    dqn_learner = learner.Learner(root_dir,
                                  train_step,
                                  agent,
                                  experience_dataset_fn,
                                  triggers=learning_triggers)

    # If we haven't trained yet make sure we collect some random samples first to
    # fill up the Replay Buffer with some experience.
    random_policy = random_py_policy.RandomPyPolicy(
        collect_env.time_step_spec(), collect_env.action_spec())
    initial_collect_actor = actor.Actor(collect_env,
                                        random_policy,
                                        train_step,
                                        steps_per_run=initial_collect_steps,
                                        observers=[rb_observer])
    logging.info('Doing initial collect.')
    initial_collect_actor.run()

    tf_collect_policy = agent.collect_policy
    collect_policy = py_tf_eager_policy.PyTFEagerPolicy(tf_collect_policy,
                                                        use_tf_function=True)

    collect_actor = actor.Actor(
        collect_env,
        collect_policy,
        train_step,
        steps_per_run=collect_steps_per_iteration,
        observers=[rb_observer, env_step_metric],
        metrics=actor.collect_metrics(10),
        summary_dir=os.path.join(root_dir, learner.TRAIN_DIR),
    )

    tf_greedy_policy = agent.policy
    greedy_policy = py_tf_eager_policy.PyTFEagerPolicy(tf_greedy_policy,
                                                       use_tf_function=True)

    eval_actor = actor.Actor(
        eval_env,
        greedy_policy,
        train_step,
        episodes_per_run=eval_episodes,
        metrics=actor.eval_metrics(eval_episodes),
        summary_dir=os.path.join(root_dir, 'eval'),
    )

    if eval_interval:
        logging.info('Evaluating.')
        eval_actor.run_and_log()

    logging.info('Training.')
    for _ in range(num_iterations):
        collect_actor.run()
        dqn_learner.run(iterations=1)

        if eval_interval and dqn_learner.train_step_numpy % eval_interval == 0:
            logging.info('Evaluating.')
            eval_actor.run_and_log()

    rb_observer.close()
    reverb_server.stop()
Example #30
0
batch_size = 64  # @param
learning_rate = 1e-3  # @param
log_interval = 200  # @param

num_eval_episodes = 10  # @param
eval_interval = 1000  # @param

"""## Environment

Environments in RL represent the task or problem that we are trying to solve. Standard environments can be easily created in TF-Agents using `suites`. We have different `suites` for loading environments from sources such as the OpenAI Gym, Atari, DM Control, etc., given a string environment name.

Now let us load the CartPole environment from the OpenAI Gym suite.
"""

import ipdb; ipdb.set_trace()
env = suite_gym.load(env_name)

"""We can render this environment to see how it looks. A free-swinging pole is attached to a cart.  The goal is to move the cart right or left in order to keep the pole pointing up."""

#@test {"skip": true}
env.reset()
PIL.Image.fromarray(env.render())



"""The `time_step = environment.step(action)` statement takes `action` in the environment.  The `TimeStep` tuple returned contains the environment's next observation and reward for that action. The `time_step_spec()` and `action_spec()` methods in the environment return the specifications (types, shapes, bounds) of the `time_step` and `action` respectively."""

print('observation_spec():')
print(env.observation_spec())
print('time_step_spec():')
print(env.time_step_spec())
Example #31
0
    def __init__(self,
                 environment: str = 'Seaquest-ram-v0',
                 num_iterations: int = 20000,
                 init_collect_steps: int = 1000,
                 collect_steps_per_iteration: int = 1,
                 replay_buffer_max_length: int = 100000,
                 batch_size: int = 64,
                 learning_rate: float = 0.001,
                 log_interval: int = 200,
                 num_eval_episodes: int = 10,
                 eval_interval: int = 1000) -> None:

        # Initialize hyperparameters

        self.num_iterations = num_iterations

        self.init_collect_steps = init_collect_steps
        self.collect_steps_per_iteration = collect_steps_per_iteration
        self.replay_buffer_max_length = replay_buffer_max_length

        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.log_interval = log_interval

        self.num_eval_episodes = num_eval_episodes
        self.eval_interval = eval_interval

        # create the OpenAI Gym training/evaluation environments

        self.env_train = suite_gym.load(environment)
        self.env_eval = suite_gym.load(environment)

        self.train_env = tf_py_environment.TFPyEnvironment(self.env_train)
        self.eval_env = tf_py_environment.TFPyEnvironment(self.env_eval)

        # Instantiate a Deep Q Network using TensorFlow DQN Agent

        fc_layer_params = (100, )

        self.q_net = q_network.QNetwork(self.train_env.observation_spec(),
                                        self.train_env.action_spec(),
                                        fc_layer_params=fc_layer_params)

        self.optimizer = tf.compat.v1.train.AdamOptimizer(
            learning_rate=self.learning_rate)

        self.train_step_counter = tf.Variable(0)

        self.agent = dqn_agent.DqnAgent(
            self.train_env.time_step_spec(),
            self.train_env.action_spec(),
            q_network=self.q_net,
            optimizer=self.optimizer,
            epsilon_greedy=0.8,
            td_errors_loss_fn=common.element_wise_squared_loss,
            gamma=0.95,
            train_step_counter=self.train_step_counter)

        self.agent.initialize()

        self.eval_policy = self.agent.policy
        self.collect_policy = self.agent.collect_policy

        self.random_policy = random_tf_policy.RandomTFPolicy(
            self.train_env.time_step_spec(), self.train_env.action_spec())

        # Collect initial data from training environment

        self.replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=self.agent.collect_data_spec,
            batch_size=self.train_env.batch_size,
            max_length=self.replay_buffer_max_length)

        self._collect_data(self.train_env,
                           self.random_policy,
                           self.replay_buffer,
                           steps=100)

        dataset = self.replay_buffer.as_dataset(
            num_parallel_calls=3,
            sample_batch_size=self.batch_size,
            num_steps=2).prefetch(3)

        self.iterator = iter(dataset)