def test_tf_autoencoder(pandas): """Just makes sure that this code will run; it doesn't check that it is creating good models. """ X = utils.randmatrix(20, 50) if pandas: X = pd.DataFrame(X) ae = tf_autoencoder.TfAutoencoder(hidden_dim=5, max_iter=100) H = ae.fit(X) ae.predict(X) H_is_pandas = isinstance(H, pd.DataFrame) assert H_is_pandas == pandas
} ], [ tf_shallow_neural_classifier.TfShallowNeuralClassifier( hidden_dim=5, hidden_activation=tf.nn.tanh, max_iter=1, eta=1.0), { 'hidden_dim': 10, 'hidden_activation': tf.nn.relu, 'max_iter': 10, 'eta': 0.1 } ], [ tf_autoencoder.TfAutoencoder(hidden_dim=5, hidden_activation=tf.nn.tanh, max_iter=1, eta=1.0), { 'hidden_dim': 10, 'hidden_activation': tf.nn.relu, 'max_iter': 10, 'eta': 0.1 } ] ]) def test_parameter_setting(model, params): model.set_params(**params) for p, val in params.items(): assert getattr(model, p) == val