Example #1
0
 def testModelVariables(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.cached_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         vgg.vgg_19(inputs, num_classes)
         expected_names = [
             'vgg_19/conv1/conv1_1/weights',
             'vgg_19/conv1/conv1_1/biases',
             'vgg_19/conv1/conv1_2/weights',
             'vgg_19/conv1/conv1_2/biases',
             'vgg_19/conv2/conv2_1/weights',
             'vgg_19/conv2/conv2_1/biases',
             'vgg_19/conv2/conv2_2/weights',
             'vgg_19/conv2/conv2_2/biases',
             'vgg_19/conv3/conv3_1/weights',
             'vgg_19/conv3/conv3_1/biases',
             'vgg_19/conv3/conv3_2/weights',
             'vgg_19/conv3/conv3_2/biases',
             'vgg_19/conv3/conv3_3/weights',
             'vgg_19/conv3/conv3_3/biases',
             'vgg_19/conv3/conv3_4/weights',
             'vgg_19/conv3/conv3_4/biases',
             'vgg_19/conv4/conv4_1/weights',
             'vgg_19/conv4/conv4_1/biases',
             'vgg_19/conv4/conv4_2/weights',
             'vgg_19/conv4/conv4_2/biases',
             'vgg_19/conv4/conv4_3/weights',
             'vgg_19/conv4/conv4_3/biases',
             'vgg_19/conv4/conv4_4/weights',
             'vgg_19/conv4/conv4_4/biases',
             'vgg_19/conv5/conv5_1/weights',
             'vgg_19/conv5/conv5_1/biases',
             'vgg_19/conv5/conv5_2/weights',
             'vgg_19/conv5/conv5_2/biases',
             'vgg_19/conv5/conv5_3/weights',
             'vgg_19/conv5/conv5_3/biases',
             'vgg_19/conv5/conv5_4/weights',
             'vgg_19/conv5/conv5_4/biases',
             'vgg_19/fc6/weights',
             'vgg_19/fc6/biases',
             'vgg_19/fc7/weights',
             'vgg_19/fc7/biases',
             'vgg_19/fc8/weights',
             'vgg_19/fc8/biases',
         ]
         model_variables = [
             v.op.name for v in variables_lib.get_model_variables()
         ]
         self.assertSetEqual(set(model_variables), set(expected_names))
Example #2
0
 def testEndPoints(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     for is_training in [True, False]:
         with ops.Graph().as_default():
             inputs = random_ops.random_uniform(
                 (batch_size, height, width, 3))
             _, end_points = vgg.vgg_19(inputs,
                                        num_classes,
                                        is_training=is_training)
             expected_names = [
                 'vgg_19/conv1/conv1_1', 'vgg_19/conv1/conv1_2',
                 'vgg_19/pool1', 'vgg_19/conv2/conv2_1',
                 'vgg_19/conv2/conv2_2', 'vgg_19/pool2',
                 'vgg_19/conv3/conv3_1', 'vgg_19/conv3/conv3_2',
                 'vgg_19/conv3/conv3_3', 'vgg_19/conv3/conv3_4',
                 'vgg_19/pool3', 'vgg_19/conv4/conv4_1',
                 'vgg_19/conv4/conv4_2', 'vgg_19/conv4/conv4_3',
                 'vgg_19/conv4/conv4_4', 'vgg_19/pool4',
                 'vgg_19/conv5/conv5_1', 'vgg_19/conv5/conv5_2',
                 'vgg_19/conv5/conv5_3', 'vgg_19/conv5/conv5_4',
                 'vgg_19/pool5', 'vgg_19/fc6', 'vgg_19/fc7', 'vgg_19/fc8'
             ]
             self.assertSetEqual(set(end_points.keys()),
                                 set(expected_names))
Example #3
0
 def testForward(self):
     batch_size = 1
     height, width = 224, 224
     with self.cached_session() as sess:
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs)
         sess.run(variables.global_variables_initializer())
         output = sess.run(logits)
         self.assertTrue(output.any())
Example #4
0
 def testFullyConvolutional(self):
     batch_size = 1
     height, width = 256, 256
     num_classes = 1000
     with self.cached_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False)
         self.assertEquals(logits.op.name, 'vgg_19/fc8/BiasAdd')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, 2, 2, num_classes])
Example #5
0
 def testBuild(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.cached_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs, num_classes)
         self.assertEquals(logits.op.name, 'vgg_19/fc8/squeezed')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
Example #6
0
 def testEvaluation(self):
   batch_size = 2
   height, width = 224, 224
   num_classes = 1000
   with self.cached_session():
     eval_inputs = random_ops.random_uniform((batch_size, height, width, 3))
     logits, _ = vgg.vgg_19(eval_inputs, is_training=False)
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     predictions = math_ops.argmax(logits, 1)
     self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
Example #7
0
 def testTrainEvalWithReuse(self):
   train_batch_size = 2
   eval_batch_size = 1
   train_height, train_width = 224, 224
   eval_height, eval_width = 256, 256
   num_classes = 1000
   with self.cached_session():
     train_inputs = random_ops.random_uniform(
         (train_batch_size, train_height, train_width, 3))
     logits, _ = vgg.vgg_19(train_inputs)
     self.assertListEqual(logits.get_shape().as_list(),
                          [train_batch_size, num_classes])
     variable_scope.get_variable_scope().reuse_variables()
     eval_inputs = random_ops.random_uniform(
         (eval_batch_size, eval_height, eval_width, 3))
     logits, _ = vgg.vgg_19(
         eval_inputs, is_training=False, spatial_squeeze=False)
     self.assertListEqual(logits.get_shape().as_list(),
                          [eval_batch_size, 2, 2, num_classes])
     logits = math_ops.reduce_mean(logits, [1, 2])
     predictions = math_ops.argmax(logits, 1)
     self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size])