def get_action(self, session, observations, action_dim): if not self.state_initialized: self._make_graph(observations, action_dim) load_state(self.model_file) self.state_initialized = True return session.run([self.action], feed_dict={self.observation: observations})
def load(path, num_cpus=1): with open(path, "rb") as f: model_data, act_params = dill.load(f) act = build_act(**act_params) sess = U.make_session(num_cpus=num_cpus) sess.__enter__() with tempfile.TemporaryDirectory() as td: filepath = os.path.join(td, "packed.zip") with open(filepath, "wb") as f: f.write(model_data) zipfile.ZipFile(filepath, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params)
def load(path): with open(path, "rb") as f: model_data, act_params = cloudpickle.load(f) act = deepq.build_act(**act_params) sess = tf.Session() sess.__enter__() with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) load_state(os.path.join(td, "model")) return ActWrapper(act, act_params)
def run(): import mlp_policy_robo U.make_session(num_cpu=1).__enter__() env = gym.make("RoboschoolHumanoid-v1") #env = wrappers.Monitor(env, directory="./video/HalfCheeta-v1", force=True) def policy_fn(name, ob_space, ac_space): return mlp_policy_robo.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=128, num_hid_layers=2) ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space) oldpi = policy_fn("oldpi", ob_space, ac_space) U.load_state("save/Humanoid-v1") for epi in range(100): ob = env.reset() total_reward = 0 step = 0 while True: env.render("human") ac, v = pi.act(True, ob) ob, rew, new, info = env.step(ac) step += 1 total_reward += rew if new: print("Reward: {}, Step: {}".format(total_reward, step)) break
def learn( env, policy_func, *, timesteps_per_batch, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize, # optimization hypers gamma, lam, # advantage estimation max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, schedule='constant' # annealing for stepsize parameters (epsilon and adam) ): # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy oldpi = policy_func("oldpi", ob_space, ac_space) # Network for old policy atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder( name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = U.mean(kloldnew) meanent = U.mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = -U.mean(tf.minimum( surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = U.mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) adam = MpiAdam(var_list, epsilon=adam_epsilon) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() adam.sync() U.load_state("save/Humanoid-v1") # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards assert sum( [max_iters > 0, max_timesteps > 0, max_episodes > 0, max_seconds > 0]) == 1, "Only one time constraint permitted" while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("********** Iteration %i ************" % iters_so_far) seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[ "tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean() ) / atarg.std() # standardized advantage function estimate d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent) optim_batchsize = optim_batchsize or ob.shape[0] #if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values logger.log("Optimizing...") logger.log(fmt_row(13, loss_names)) # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [ ] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize): *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) adam.update(g, optim_stepsize * cur_lrmult) losses.append(newlosses) logger.log(fmt_row(13, np.mean(losses, axis=0))) logger.log("Evaluating losses...") losses = [] for batch in d.iterate_once(optim_batchsize): newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) losses.append(newlosses) meanlosses, _, _ = mpi_moments(losses, axis=0) logger.log(fmt_row(13, meanlosses)) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_" + name, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if MPI.COMM_WORLD.Get_rank() == 0: logger.dump_tabular() U.save_state("save/Humanoid-v1")
scenario.reset_world, scenario.reward, scenario.observation, info_callback=None, shared_viewer=True) # render call to create viewer window (necessary only for interactive policies) env.render_whole_field() obs_shape_n = [env.observation_space[i].shape for i in range(env.n)] num_adversaries = 7 trainers = get_trainers(env, num_adversaries, obs_shape_n, args) # create interactive policies for each agent policies = [InteractivePolicy(env, i) for i in range(env.n)] # execution loop # load session saver = U.load_state(args.load_dir) # TODO: Pick the latest? # TODO: Do I need to make agents??? # So now the session hosted by U.single_threaded_session SHOULD be loaded? obs_n = env.reset() while True: # query for action from each agent's policy # act_n = [] # for i, policy in enumerate(policies): # act_n.append(policy.action(obs_n[i])) act_n = [agent.action(obs) for agent, obs in zip(trainers, obs_n)] # environment step # new_obs_n, rew_n, done_n, info_n = env.step(action_n)
def dist_learn(env, q_dist_func, num_atoms=51, V_max=10, lr=25e-5, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.01, exploration_final_eps=0.008, train_freq=1, batch_size=32, print_freq=1, checkpoint_freq=2000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, num_cpu=1, callback=None): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. num_cpu: int number of cpus to use for training callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = U.single_threaded_session() sess.__enter__() def make_obs_ph(name): print name return U.BatchInput(env.observation_space.shape, name=name) act, train, update_target, debug = build_dist_train( make_obs_ph=make_obs_ph, dist_func=q_dist_func, num_actions=env.action_space.n, num_atoms=num_atoms, V_max=V_max, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10) # act, train, update_target, debug = build_train( # make_obs_ph=make_obs_ph, # q_func=q_func, # num_actions=env.action_space.n, # optimizer=tf.train.AdamOptimizer(learning_rate=lr), # gamma=gamma, # grad_norm_clipping=10 # ) act_params = { 'make_obs_ph': make_obs_ph, 'q_dist_func': q_dist_func, 'num_actions': env.action_space.n, } # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") print model_file # mkdir_p(os.path.dirname(model_file)) for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value action = act(np.array(obs)[None], update_eps=exploration.value(t))[0] new_obs, rew, done, _ = env.step(action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: # print "CCCC" obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None # print "Come1" # print np.shape(obses_t), np.shape(actions), np.shape(rewards), np.shape(obses_tp1), np.shape(dones) td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) # print "Loss : {}".format(td_errors) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: print "steps : {}".format(t) print "episodes : {}".format(num_episodes) print "mean 100 episode reward: {}".format(mean_100ep_reward) # print "mean 100 episode reward".format(mean_100ep_reward) # logger.record_tabular("episodes", num_episodes) # logger.record_tabular("mean 100 episode reward", mean_100ep_reward) # logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) # logger.dump_tabular() # logger.record_tabular("steps", t) # logger.record_tabular("episodes", num_episodes) # logger.record_tabular("mean 100 episode reward", mean_100ep_reward) # logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) # logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and t % checkpoint_freq == 0): print "==========================" print "Error: {}".format(td_errors) if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: print "Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward) # logger.log("Saving model due to mean reward increase: {} -> {}".format( # saved_mean_reward, mean_100ep_reward)) U.save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: print "Restored model with mean reward: {}".format( saved_mean_reward) # logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) U.load_state(model_file) return ActWrapper(act, act_params)
def __init__(self, *, scope, ob_space, ac_space, stochpol_fn, nsteps, nepochs=4, nminibatches=1, gamma=0.99, gamma_ext=0.99, lam=0.95, ent_coef=0, cliprange=0.2, max_grad_norm=1.0, vf_coef=1.0, lr=30e-5, adam_hps=None, testing=False, comm=None, comm_train=None, use_news=False, update_ob_stats_every_step=True, int_coeff=None, ext_coeff=None, restore_model_path=None): self.lr = lr self.ext_coeff = ext_coeff self.int_coeff = int_coeff self.use_news = use_news self.update_ob_stats_every_step = update_ob_stats_every_step self.abs_scope = (tf.get_variable_scope().name + '/' + scope).lstrip('/') self.testing = testing self.comm_log = MPI.COMM_SELF if comm is not None and comm.Get_size() > 1: self.comm_log = comm assert not testing or comm.Get_rank( ) != 0, "Worker number zero can't be testing" if comm_train is not None: self.comm_train, self.comm_train_size = comm_train, comm_train.Get_size( ) else: self.comm_train, self.comm_train_size = self.comm_log, self.comm_log.Get_size( ) self.is_log_leader = self.comm_log.Get_rank() == 0 self.is_train_leader = self.comm_train.Get_rank() == 0 with tf.variable_scope(scope): self.best_ret = -np.inf self.local_best_ret = -np.inf self.rooms = [] self.local_rooms = [] self.scores = [] self.ob_space = ob_space self.ac_space = ac_space self.stochpol = stochpol_fn() self.nepochs = nepochs self.cliprange = cliprange self.nsteps = nsteps self.nminibatches = nminibatches self.gamma = gamma self.gamma_ext = gamma_ext self.lam = lam self.adam_hps = adam_hps or {} self.ph_adv = tf.placeholder(tf.float32, [None, None]) self.ph_ret_int = tf.placeholder(tf.float32, [None, None]) self.ph_ret_ext = tf.placeholder(tf.float32, [None, None]) self.ph_oldnlp = tf.placeholder(tf.float32, [None, None]) self.ph_oldvpred = tf.placeholder(tf.float32, [None, None]) self.ph_lr = tf.placeholder(tf.float32, []) self.ph_lr_pred = tf.placeholder(tf.float32, []) self.ph_cliprange = tf.placeholder(tf.float32, []) #Define loss; returns tf.nn.softmax_cross_entropy_with_logits_v2 neglogpac = self.stochpol.pd_opt.neglogp(self.stochpol.ph_ac) entropy = tf.reduce_mean(self.stochpol.pd_opt.entropy()) vf_loss_int = (0.5 * vf_coef) * tf.reduce_mean( tf.square(self.stochpol.vpred_int_opt - self.ph_ret_int)) vf_loss_ext = (0.5 * vf_coef) * tf.reduce_mean( tf.square(self.stochpol.vpred_ext_opt - self.ph_ret_ext)) vf_loss = vf_loss_int + vf_loss_ext ratio = tf.exp(self.ph_oldnlp - neglogpac) # p_new / p_old negadv = -self.ph_adv pg_losses1 = negadv * ratio pg_losses2 = negadv * tf.clip_by_value( ratio, 1.0 - self.ph_cliprange, 1.0 + self.ph_cliprange) pg_loss = tf.reduce_mean(tf.maximum(pg_losses1, pg_losses2)) ent_loss = (-ent_coef) * entropy approxkl = .5 * tf.reduce_mean( tf.square(neglogpac - self.ph_oldnlp)) maxkl = .5 * tf.reduce_max(tf.square(neglogpac - self.ph_oldnlp)) clipfrac = tf.reduce_mean( tf.to_float(tf.greater(tf.abs(ratio - 1.0), self.ph_cliprange))) loss = pg_loss + ent_loss + vf_loss + self.stochpol.aux_loss #Create optimizer. params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.abs_scope) logger.info("PPO: using MpiAdamOptimizer connected to %i peers" % self.comm_train_size) trainer = MpiAdamOptimizer(self.comm_train, learning_rate=self.ph_lr, **self.adam_hps) grads_and_vars = trainer.compute_gradients(loss, params) grads, vars = zip(*grads_and_vars) if max_grad_norm: _, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm) global_grad_norm = tf.global_norm(grads) grads_and_vars = list(zip(grads, vars)) self._train = trainer.apply_gradients(grads_and_vars) #Quantities for reporting. self._losses = [ loss, pg_loss, vf_loss, entropy, clipfrac, approxkl, maxkl, self.stochpol.aux_loss, self.stochpol.feat_var, self.stochpol.max_feat, global_grad_norm ] self.loss_names = [ 'tot', 'pg', 'vf', 'ent', 'clipfrac', 'approxkl', 'maxkl', "auxloss", "featvar", "maxfeat", "gradnorm" ] self.I = None self.disable_policy_update = None allvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.abs_scope) if self.is_log_leader: tf_util.display_var_info(allvars) model_path = os.path.join(logger.get_dir(), 'saved_model') self.model_path = os.path.join(model_path, 'ppo.ckpt') if restore_model_path: tf_util.load_state(restore_model_path) else: #self.activate_graph_debugging() tf.get_default_session().run(tf.variables_initializer(allvars)) #Syncs initialization across mpi workers. sync_from_root(tf.get_default_session(), allvars) self.t0 = time.time() self.global_tcount = 0
def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('expert_training_data', type=str) parser.add_argument('--train', action='store_true') parser.add_argument('--loadcheckpoint', type=str, default=None) parser.add_argument('--savecheckpoint', type=str, default=None) parser.add_argument('--summaries_dir', type=str, default="summaries/") parser.add_argument('--num_epochs', type=int, default=100) parser.add_argument('--minibatch_size', type=int, default=1000) parser.add_argument('--nueral_net', action='store_true') parser.add_argument('--render', action='store_true') args = parser.parse_args() env = gym.make("Humanoid-v1") with tf.Session() as sess: training_data = pickle.load(open(args.expert_training_data)) training_observations = training_data['observations'] training_actions = training_data['actions'] num_examples = training_observations.shape[0] print "Loaded %d expert examples" % (num_examples) obs_dim = training_observations.shape[1] action_dim = training_actions.shape[2] print "Observation dim %s" % obs_dim print "Action dim %s" % action_dim mean = np.mean(training_observations, axis=0) std = np.std(training_observations, axis=0) + 1e-6 high = env.action_space.high low = env.action_space.low policy = None if args.nueral_net: policy = NueralNet(obs_dim, action_dim, hidden_dims=[64, 64]) else: policy = AffinePolicy(obs_dim, action_dim) merged_summaries = tf.summary.merge_all() summary_writer = tf.train.SummaryWriter(args.summaries_dir, sess.graph) tf_util.eval(tf.global_variables_initializer()) if args.loadcheckpoint: tf_util.load_state(args.loadcheckpoint) if args.train: training_iterations = args.num_epochs * num_examples / args.minibatch_size for t in xrange(training_iterations): batch_idxs = np.random.choice(np.arange(num_examples), args.minibatch_size) batch_actions = training_actions[batch_idxs] batch_observations = (training_observations[batch_idxs] - mean) / std feed_dict = { policy.input: batch_observations, policy.targets: batch_actions } loss = 0.0 if t % 10 == 0: _, loss, summary = tf_util.eval( [policy.optimizer, policy.loss, merged_summaries], feed_dict=feed_dict) summary_writer.add_summary(summary, t) else: _, loss = tf_util.eval([policy.optimizer, policy.loss], feed_dict=feed_dict) if (t * args.minibatch_size) % num_examples == 0: epoch_number = int(t * args.minibatch_size / num_examples) print "Epoch: %d, loss: %s" % (epoch_number, loss / args.minibatch_size) reward = run_policy(env, policy, render=args.render, mean=mean, std=std) print "Reward: %s" % reward if args.savecheckpoint: tf_util.save_state(args.savecheckpoint) print "Finished training after %s epochs" % (args.num_epochs) trial_total_rewards = [] for i in xrange(1000): if i % 100 == 0: print "Collecting policy performance %s..." % (i) trial_total_rewards.append(run_policy(env, policy)) trial_total_rewards = np.array(trial_total_rewards) print "Policy results" print "Mean: %s, Std: %s" % (trial_total_rewards.mean(), trial_total_rewards.std())
def load_test(*, env_id, num_env, hps, num_timesteps, seed, fname): venv = VecFrameStack( make_atari_env(env_id, num_env, seed, wrapper_kwargs=dict(), start_index=num_env * MPI.COMM_WORLD.Get_rank(), max_episode_steps=hps.pop('max_episode_steps')), hps.pop('frame_stack')) # venv.score_multiple = {'Mario': 500, # 'MontezumaRevengeNoFrameskip-v4': 100, # 'GravitarNoFrameskip-v4': 250, # 'PrivateEyeNoFrameskip-v4': 500, # 'SolarisNoFrameskip-v4': None, # 'VentureNoFrameskip-v4': 200, # 'PitfallNoFrameskip-v4': 100, # }[env_id] venv.score_multiple = 1 venv.record_obs = True ob_space = venv.observation_space ac_space = venv.action_space gamma = hps.pop('gamma') policy = {'rnn': CnnGruPolicy, 'cnn': CnnPolicy}[hps.pop('policy')] agent = PpoAgent( scope='ppo', ob_space=ob_space, ac_space=ac_space, stochpol_fn=functools.partial( policy, scope='pol', ob_space=ob_space, ac_space=ac_space, update_ob_stats_independently_per_gpu=hps.pop( 'update_ob_stats_independently_per_gpu'), proportion_of_exp_used_for_predictor_update=hps.pop( 'proportion_of_exp_used_for_predictor_update'), dynamics_bonus=hps.pop("dynamics_bonus")), gamma=gamma, gamma_ext=hps.pop('gamma_ext'), lam=hps.pop('lam'), nepochs=hps.pop('nepochs'), nminibatches=hps.pop('nminibatches'), lr=hps.pop('lr'), cliprange=0.1, nsteps=128, ent_coef=0.001, max_grad_norm=hps.pop('max_grad_norm'), use_news=hps.pop("use_news"), comm=MPI.COMM_WORLD if MPI.COMM_WORLD.Get_size() > 1 else None, update_ob_stats_every_step=hps.pop('update_ob_stats_every_step'), int_coeff=hps.pop('int_coeff'), ext_coeff=hps.pop('ext_coeff'), obs_save_flag=True) tf_util.load_state("saved_states/save1") agent.start_interaction([venv]) counter = 0 while True: info = agent.step() if agent.I.stats['epcount'] > 1: with open("obs_acs.pickle", 'wb') as f1: pickle.dump(agent.obs_rec, f1) break
def learn(env, q_func, alpha=1e-5, num_cpu=1, n_steps=100000, update_target_every=500, train_main_every=1, print_every=50, checkpoint_every=10000, buffer_size=50000, gamma=1.0, batch_size=32, param_noise=False, pre_run_steps=1000, exploration_fraction=0.1, final_epsilon=0.1, callback=None): """ :param env: gym.Env, environment from OpenAI :param q_func: (tf.Variable, int, str, bool) -> tf.Variable the q function takes the following inputs: input_ph: tf.placeholder, network input n_actions: int, number of possible actions scope: str, specifying the variable scope reuse: bool, whether to reuse the variable given in `scope` :param alpha: learning rate :param num_cpu: number of cpu to use :param n_steps: number of training steps :param update_target_every: frequency to update the target network :param train_main_every: frequency to update(train) the main network :param print_every: how often to print message to console :param checkpoint_every: how often to save the model. :param buffer_size: size of the replay buffer :param gamma: int, discount factor :param batch_size: int, size of the input batch :param param_noise: bool, whether to use parameter noise :param pre_run_steps: bool, pre-run steps to fill in the replay buffer. And only after `pre_run_steps` steps, will the main and target network begin to update. :param exploration_fraction: float, between 0 and 1. Fraction of the `n_steps` to linearly decrease the epsilon. After that, the epsilon will remain unchanged. :param final_epsilon: float, final epsilon value, usually a very small number towards zero. :param callback: (dict, dict) -> bool a function to decide whether it's time to stop training, takes following inputs: local_vars: dict, the local variables in the current scope global_vars: dict, the global variables in the current scope :return: ActWrapper, a callable function """ n_actions = env.action_space.n sess = U.make_session(num_cpu) sess.__enter__() def make_obs_ph(name): return U.BatchInput(env.observation_space.shape, name=name) act, train, update_target, debug = build_train( make_obs_ph, q_func, n_actions, optimizer=tf.train.AdamOptimizer(alpha), gamma=gamma, param_noise=param_noise, grad_norm_clipping=10) act_params = { "q_func": q_func, "n_actions": env.action_space.n, "make_obs_ph": make_obs_ph, } buffer = ReplayBuffer(buffer_size) exploration = LinearSchedule(schedule_steps=int(exploration_fraction * n_steps), final_p=final_epsilon, initial_p=1.0) # writer = tf.summary.FileWriter("./log", sess.graph) U.initialize() # writer.close() update_target() # copy from the main network episode_rewards = [] current_episode_reward = 0.0 model_saved = False saved_mean_reward = 0.0 obs_t = env.reset() with tempfile.TemporaryDirectory() as td: model_file_path = os.path.join(td, "model") for step in range(n_steps): if callback is not None: if callback(locals(), globals()): break kwargs = {} if not param_noise: epsilon = exploration.value(step) else: assert False, "Not implemented" action = act(np.array(obs_t)[None], epsilon=epsilon, **kwargs)[0] obs_tp1, reward, done, _ = env.step(action) current_episode_reward += reward buffer.add(obs_t, action, reward, obs_tp1, done) obs_t = obs_tp1 if done: obs_t = env.reset() episode_rewards.append(current_episode_reward) current_episode_reward = 0.0 # given sometime to fill in the buffer if step < pre_run_steps: continue # q_value = debug["q_values"] # if step % 1000 == 0: # print(q_value(np.array(obs_t)[None])) if step % train_main_every == 0: obs_ts, actions, rewards, obs_tp1s, dones = buffer.sample( batch_size) weights = np.ones_like(dones) td_error = train(obs_ts, actions, rewards, obs_tp1s, dones, weights) if step % update_target_every == 0: update_target() mean_100eps_reward = float(np.mean(episode_rewards[-101:-1])) if done and print_every is not None and len( episode_rewards) % print_every == 0: print( "step %d, episode %d, epsilon %.2f, running mean reward %.2f" % (step, len(episode_rewards), epsilon, mean_100eps_reward)) if checkpoint_every is not None and step % checkpoint_every == 0: if saved_mean_reward is None or mean_100eps_reward > saved_mean_reward: U.save_state(model_file_path) model_saved = True if print_every is not None: print( "Dump model to file due to mean reward increase: %.2f -> %.2f" % (saved_mean_reward, mean_100eps_reward)) saved_mean_reward = mean_100eps_reward if model_saved: U.load_state(model_file_path) if print_every: print("Restore model from file with mean reward %.2f" % (saved_mean_reward, )) return ActWrapper(act, act_params)
def learn(env, q_func, lr=1e-2, max_timesteps=1000000, buffer_size=50000, exploration_fraction=1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph def make_obs_ph(name): return ObservationInput(env.observation_space, name=name) act, train, update_target, debug = build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) #exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), # initial_p=0.7, # final_p=0.15) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_state(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) #logger.record_tabular("replay buffer size", replay_buffer.__len__()) logger.dump_tabular() #if done and num_episodes % 100 == 1: # filehandler = open("cartpole_MDP_replay_buffer.obj","wb") # pickle.dump(replay_buffer,filehandler) # filehandler.close() # print('MDP model samples saved',replay_buffer.__len__()) # file = open("cartpole_MDP_replay_buffer.obj",'rb') # reloaded_replay_buffer = pickle.load(file) # file.close() # print('MDP model samples loaded',reloaded_replay_buffer.__len__()) if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_state(model_file) #file = open("cartpole_MDP_replay_buffer.obj",'rb') #reloaded_replay_buffer = pickle.load(file) #file.close() #reloaded_replay_buffer.__len__() filehandler = open("cartpole_MDP_replay_buffer.obj", "wb") pickle.dump(replay_buffer, filehandler) filehandler.close() print('MDP model samples saved', replay_buffer.__len__()) file = open("cartpole_MDP_replay_buffer.obj", 'rb') reloaded_replay_buffer = pickle.load(file) file.close() print('MDP model samples loaded', reloaded_replay_buffer.__len__()) return act