Example #1
0
def main(argv):
    #######################################################################
    # Initial Setup. Logging, Flags, Random seeds.
    #######################################################################
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")
    absl_logging.use_python_logging()
    flags_dict = {
        flag.name: flag.value
        for flag in FLAGS.flags_by_module_dict()[argv[0]]
    }

    if FLAGS.use_subset:
        message = (f"{colorama.Back.RED}{colorama.Fore.WHITE}"
                   f"{colorama.Style.BRIGHT}USING A SUBSET OF THE DATASET"
                   f"{colorama.Style.RESET_ALL}")
        LOGGER.warning(message)

    utils.log_module_args(LOGGER, argv[0])
    if not FLAGS.output_dir.startswith("gs://"):
        utils.check_exists(FLAG_OUTPUT_DIR.value)
        if not tf.io.gfile.isdir(FLAG_OUTPUT_DIR.value):
            raise RuntimeError("Output dir needs to be a directory.")

    tf.random.set_seed(FLAG_RANDOM_SEED.value)
    np.random.seed(FLAG_RANDOM_SEED.value)

    # Prepare the instance output directory path and save the config there
    folder_name = time.strftime(
        f"{FLAG_RUN_NAME.value}_{FLAG_APPROACH_TYPE.value}_%Y%m%d-%H%M%S")
    instance_output_dir = os.path.join(FLAG_OUTPUT_DIR.value,
                                       folder_name).strip()
    if not instance_output_dir.endswith("/"):
        instance_output_dir += "/"
    json_target = os.path.join(instance_output_dir, "training_params.json")
    if not json_target.strip().startswith("gs://"):
        subprocess.check_call(["mkdir", "-p", instance_output_dir])
    utils.to_json_file(json_target, instance_output_dir)

    ##############################################################################
    # Initialization and Configuration of the Devices.
    ##############################################################################
    tpu_setup = None
    # current_acelerator_type is always "CPU" in the beginning with TPUs
    if tf_utils.current_accelerator_type() == "CPU":
        tpu_setup = tf_utils.init_tpus()

    LOGGER.debug("Devices we are computing on:\n%s",
                 utils.wrap_iterable(map(str, tf_utils.devices_to_use())))
    LOGGER.debug("All devices:")
    LOGGER.debug(tf_utils.device_mapping())

    if tf_utils.current_accelerator_type() == "GPU":
        tf.config.set_soft_device_placement(True)

    if tf_utils.current_accelerator_type() != "TPU":
        tf.debugging.set_log_device_placement(True)

    if FLAG_DISTRIBUTE_MODE.value in constants.PURE_DATA_PARALLEL_STRATEGIES:
        actual_num_replicas = len(tf_utils.devices_to_use())
    elif FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
        actual_num_replicas = FLAG_NUM_REPLICAS.value
    else:
        actual_num_replicas = 1

    ##############################################################################
    # We load the retriever model if it is needed.
    ##############################################################################
    # Not currently used.

    retriever = None
    # if (FLAG_APPROACH_TYPE.value ==
    #     constants.ApproachTypeChoices.lm_and_realm):
    #   raise NotImplementedError("This part needs to be tested anew.")
    # config_path = FLAG_RETRIEVER_CONFIG_PATH.value
    # realm_save = tf_utils.REALMSave(**utils.from_json_file(config_path))
    #
    # # Approx 15 min when not in dev mode, on CPU
    # with utils.log_duration(LOGGER, "main",
    #                         "whole of BERTScaNNRetriever.__init__",
    #                         logging.INFO):
    #   scann_config = retrievers.ScannConfig(
    #       **utils.from_json_file(FLAG_SCANN_CONFIG_PATH.value))
    #   retriever = retrievers.BERTScaNNRetriever(
    #       retriever_module_path=realm_save.query_embedder_path,
    #       block_records_path=realm_save.text_records,
    #       num_block_records=realm_save.num_block_records,
    #       mode=tf.estimator.ModeKeys.EVAL,
    #       scann_config=scann_config)

    # elif (FLAG_APPROACH_TYPE.value ==
    #       constants.ApproachTypeChoices.cached_realm):
    #   raise NotImplementedError("This part needs to be tested anew.")
    # config_path = FLAG_RETRIEVER_CONFIG_PATH.value
    # realm_save = tf_utils.REALMSave(**utils.from_json_file(config_path))
    #
    # # Approx 15 min when not in dev mode, on CPU
    # with utils.log_duration(LOGGER, "main",
    #                         "whole of FullyCachedRetriever.__init__",
    #                         logging.INFO):
    #
    #   retriever = retrievers.FullyCachedRetriever(
    #       db_path=FLAG_FULLYCACHED_H5_PATH.value,
    #       block_records_path=realm_save.text_records,
    #       num_block_records=realm_save.num_block_records,
    #       )

    ##############################################################################
    # Distributed training task
    ##############################################################################
    if FLAG_TASK.value == constants.TaskChoices.train:
        with utils.log_duration(LOGGER, "main", "Load model"):
            utils.print_mem("before loading model", LOGGER)
            model_specific = task_specific.load_model(
                FLAG_MODEL_LOAD_PATH.value, FLAG_MODEL_KEY.value,
                FLAG_DISTRIBUTE_MODE.value, tpu_setup, FLAG_NUM_REPLICAS.value)
            utils.print_mem("after loading model", LOGGER)
            model_or_replicas = model_specific.model
            if isinstance(model_or_replicas, list):
                model_or_replicas: List[transformers.TFGPT2LMHeadModel]
            else:
                model_or_replicas: transformers.TFGPT2LMHeadModel

            tokenizer = model_specific.tokenizer

            def make_optimizer():
                return tensor2tensor.utils.adafactor.AdafactorOptimizer(
                    learning_rate=FLAG_LEARNING_RATE.value)

            if model_specific.strategy:
                with model_specific.strategy.scope():
                    optimizer = make_optimizer()
            else:
                optimizer = make_optimizer()

        ############################################################################
        # Prepare the dataset functions
        ############################################################################
        rg = np.random.default_rng(FLAG_RANDOM_SEED.value)

        def call_lm_preproc(repeat, split, random_seed):
            """Using functools.partial prevents the linter from doing its job."""
            if FLAG_DATASET_NAME.value == constants.DatasetNameChoices.kilt_eli5:
                return task_specific.create_lm_ds_kilt_eli5(
                    tokenizer=tokenizer,
                    context_window_size=(
                        model_or_replicas[0].config.n_positions if isinstance(
                            model_or_replicas,
                            list) else model_or_replicas.config.n_positions),
                    dataset_name=FLAG_DATASET_NAME.value,
                    # Batches are split over the replicas:
                    batch_size=FLAG_BATCH_SIZE.value * actual_num_replicas,
                    db_path=FLAG_DB_PATH.value,
                    random_seed=random_seed,
                    use_subset=FLAG_USE_SUBSET.value,
                    subset_size=FLAG_SUBSET_SIZE.value,
                    use_helper_words=FLAG_USE_HELPER_WORDS.value,
                    approach_type=FLAG_APPROACH_TYPE.value,
                    num_retrievals=FLAG_NUM_RETRIEVALS.value,
                    retrieval_temperature=FLAG_RETRIEVAL_TEMPERATURE.value,
                    retriever=retriever,
                    repeat=repeat,
                    split=split,
                    enable_debug_checks=FLAG_DATASET_DEBUG.value,
                    retrieval_bank_size=FLAG_RETRIEVAL_BANK_SIZE.value,
                    dataset_type=FLAG_DATASET_TYPE.value,
                    qty_shuffle=FLAG_QTY_SHUFFLE.value,
                    tfr_prefix=FLAG_TFR_PREFIX.value,
                    max_length_generation=FLAG_MAX_LENGTH_GENERATION.value,
                )
            else:
                raise NotImplementedError(
                    f"FLAG_DATASET_NAME.value unsupported: `{FLAG_DATASET_NAME.value}`"
                )

        make_training_dataset: Callable[Ellipsis,
                                        tf.data.Dataset] = functools.partial(
                                            call_lm_preproc,
                                            split="train",
                                            repeat=False,
                                        )
        make_eval_dataset: Callable[Ellipsis,
                                    tf.data.Dataset] = functools.partial(
                                        call_lm_preproc,
                                        split="eval",
                                        repeat=True,
                                    )

        ############################################################################
        # Prepare the step functions
        ############################################################################
        utils.check_contained(FLAG_DISTRIBUTE_MODE.value,
                              constants.DistributeModeChoices.choices())
        tf_function_flags = dict(
            experimental_compile=FLAG_EXPERIMENTAL_COMPILE.value,
            experimental_relax_shapes=not FLAG_INPUT_FIXED_SIZE.value)

        if (FLAG_DISTRIBUTE_MODE.value ==
                constants.DistributeModeChoices.split_and_data_parallel):
            if not isinstance(model_or_replicas, list):
                raise RuntimeError(type(model_or_replicas))
            training_step = build_manual_data_parallel_training_step(
                model_or_replicas, optimizer, tf_function_flags)

        else:
            training_step = build_regular_training_step(
                model_or_replicas,
                optimizer,
                strategy=model_specific.strategy,
                tf_function_kwargs=tf_function_flags)

        evaluation_step = build_evaluation_step(model_or_replicas,
                                                tf_function_flags)

        secs_since_last_ckpt = time.time()
        # Model checkpoints are saved to the tmp_directory and then rsynced to GCS
        ##########################################################################
        # Prepare the different logging facilities
        ##########################################################################
        train_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "train")
        eval_log_dir = os.path.join(instance_output_dir, "tensorboard", "eval")
        flags_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "params")
        writers = dict(train=tf.summary.create_file_writer(train_log_dir),
                       eval=tf.summary.create_file_writer(eval_log_dir),
                       flags=tf.summary.create_file_writer(flags_log_dir))
        with writers["flags"].as_default():
            tf.summary.text(
                "Flags",
                # Tensorboard takes Markdown:
                json.dumps(flags_dict, indent=4).replace("\n", "\n\n"),
                step=0)

        ma_loss = dict(train=utils.MovingAverage(0.9),
                       eval=utils.MovingAverage(0.9))
        step_counters = dict(train=0, eval=0)
        batch_counters = dict(train=0, eval=0)
        prev_batch_end = time.time()

        # The eval ds has no real concept of epoch, repeats forever, shuffling
        # each time it reaches its end
        with utils.log_duration(LOGGER, "main", "All of make_eval_dataset"):
            eval_ds_instance = make_eval_dataset(random_seed=rg.integers(
                -2**63, 2**63 - 1), )
        LOGGER.debug("Distributing the eval dataset to the replicas.")
        if FLAG_DATASET_TYPE.value == "tfr":
            eval_ds_instance = (
                model_specific.strategy.experimental_distribute_dataset(
                    eval_ds_instance))

        LOGGER.debug("Done distributing the eval dataset to the replcias.")
        eval_ds_instance = iter(eval_ds_instance)

        ##########################################################################
        # Training Loop
        ##########################################################################
        for epoch in itertools.count():
            ####################################################################
            # Epoch Setup
            ####################################################################
            LOGGER.debug("EPOCH %d START", epoch)
            # Shuffle differently every epoch
            with utils.log_duration(LOGGER, "main",
                                    "All of make_training_dataset"):
                train_ds_instance = make_training_dataset(
                    random_seed=rg.integers(-2**63, 2**63 - 1), )
            LOGGER.debug(
                "Attempting to distribute the training dataset to the replicas."
            )
            if FLAG_DATASET_TYPE.value == "tfr":
                train_ds_instance = (
                    model_specific.strategy.experimental_distribute_dataset(
                        train_ds_instance))

            LOGGER.debug(
                "Done distributing the training dataset to the replicas.")
            train_ds_instance = iter(train_ds_instance)

            # This allows us to see if we reached the end of the training iterator,
            # in which case "did_at_least_one_training_batch == False".
            # We could also test that it did all the batches, to similar results.
            did_at_least_one_training_batch = True
            split = "eval"
            while did_at_least_one_training_batch:
                # Invert split
                if split == "train":
                    split = "eval"
                else:
                    split = "train"

                # Prepare to test if we did at least one training batch
                if split == "train":
                    did_at_least_one_training_batch = False

                if split == "train":
                    dataset_iterator = itertools.islice(
                        train_ds_instance, FLAG_BATCHES_BETWEEN_EVALS.value)
                else:
                    # The evaluation DS is tiny, so we reshuffle and take a random
                    dataset_iterator = itertools.islice(
                        eval_ds_instance, FLAG_NUMBER_EVAL_BATCHES.value)

                LOGGER.debug("Batching")
                for batch in dataset_iterator:
                    # LOGGER.debug("Input sentence:\n\"%s\"",
                    #              tokenizer.decode([x for x in batch["input_ids"][0]
                    #                                if x != tokenizer.eos_token_id]))
                    # LOGGER.debug("Label:\n\"%s\"",
                    #              tokenizer.decode([(x if x != -100 else 0)
                    #                                for x in batch["label_ids"][0]]))

                    if FLAG_DATASET_TYPE.value != "tfr":
                        batch = (model_specific.strategy.
                                 experimental_distribute_values_from_function(
                                     tf_utils.make_dict_distribute_fn(batch)))

                    # We only care about training epochs as, obviously, we don't train
                    # over eval samples; the number of  eval samples seen only
                    # contributes to lowering the variance in the evaluation of when to
                    # do early stopping.
                    if split == "train":
                        did_at_least_one_training_batch = True

                    input_ids = batch["input_ids"]
                    label_ids = batch["label_ids"]

                    ####################################################################
                    # Training Step
                    ####################################################################
                    step_counters[split] += (FLAG_BATCH_SIZE.value *
                                             actual_num_replicas)

                    if split == "train":
                        batch_counters[split] += 1
                        training_kwargs = dict(
                            input_ids=input_ids,
                            label_ids=label_ids,
                        )

                        if model_specific.strategy:
                            utils.print_mem("before running", LOGGER)

                            LOGGER.debug("Training, Calling strategy.run")
                            loss = model_specific.strategy.run(
                                training_step, kwargs=training_kwargs)
                            LOGGER.debug("Training, Done with strategy.run")
                            utils.print_mem("after running", LOGGER)

                        else:
                            loss = training_step(**training_kwargs)  # pytype: disable=wrong-arg-count
                            # If we are in the strategy-free data parallel mode, we need
                            # to change the weights of all replicas to those of the model at
                            # index 0
                            if (FLAG_DISTRIBUTE_MODE.value ==
                                    constants.DistributeModeChoices.
                                    split_and_data_parallel):
                                for replica in model_or_replicas[1:]:
                                    replica.set_weights(
                                        model_or_replicas[0].get_weights())

                    ####################################################################
                    # Evaluation Step
                    ####################################################################
                    elif split == "eval":
                        evaluation_kwargs = dict(
                            input_ids=input_ids,
                            label_ids=label_ids,
                        )

                        if model_specific.strategy:
                            loss = model_specific.strategy.run(
                                evaluation_step, kwargs=evaluation_kwargs)
                        else:
                            loss = evaluation_step(**evaluation_kwargs)
                    else:
                        raise ValueError(
                            f"Unexpected value for split: {split}")

                    ####################################################################
                    # Logging
                    ####################################################################
                    if (FLAG_DISTRIBUTE_MODE.value
                            in constants.PURE_DATA_PARALLEL_STRATEGIES):
                        utils.check_equal(len(loss.values),
                                          actual_num_replicas)
                        LOGGER.debug("Split: %s", split)
                        LOGGER.debug("Real num replicas: %s",
                                     actual_num_replicas)
                        LOGGER.debug("Loss: %s", loss)
                        LOGGER.debug("Loss values: %s", loss.values)

                        average_loss = float(
                            tf.math.reduce_mean(loss.values).numpy())
                    else:
                        average_loss = float(loss.numpy())

                    # tf.debugging.check_numerics(loss)
                    now = time.time()
                    batch_duration = now - prev_batch_end
                    prev_batch_end = now
                    ma_loss[split].update(average_loss)

                    # Actual logging
                    LOGGER.info("Epoch: # %d", epoch)
                    LOGGER.info("Tensorboard_dir: %s", instance_output_dir)
                    LOGGER.info("Batch: %s # %d", split, batch_counters[split])
                    LOGGER.info("Step: %s # %d", split, step_counters[split])
                    if FLAG_USE_SUBSET.value:
                        LOGGER.warning(">> USING A SUBSET OF THE DATASET <<")
                    LOGGER.info("%(split)s Batch loss:           %(metric)f",
                                dict(split=split, metric=average_loss))
                    LOGGER.info(
                        "%(split)s Moving average loss:  %(metric)f",
                        dict(split=split, metric=ma_loss[split].average))
                    LOGGER.info(
                        "%(split)s Moving average ppl:   %(metric)f",
                        dict(split=split,
                             metric=np.exp(ma_loss[split].average)))
                    LOGGER.info(
                        "%(split)s Batch duration:       %(duration)s",
                        dict(split=split,
                             duration=utils.TimeStamp.from_seconds(
                                 batch_duration).format()))
                    if FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
                        LOGGER.info(
                            "%(split)s Duration per sample:  %(duration)s",
                            dict(split=split,
                                 duration=utils.TimeStamp.from_seconds(
                                     batch_duration / (FLAG_BATCH_SIZE.value *
                                                       actual_num_replicas))))

                    # Write to Tensorboard
                    with writers[split].as_default():
                        tf.summary.scalar(f"Loss/{split}", average_loss,
                                          step_counters[split])
                        tf.summary.scalar(f"PPL/{split}", np.exp(average_loss),
                                          step_counters[split])
                    writers[split].flush()

                    # Save every 5 min
                    if (time.time() - secs_since_last_ckpt) / (60 * 20) >= 1:
                        secs_since_last_ckpt = time.time()
                        save_model(train_steps=step_counters["train"],
                                   model_or_replicas=model_or_replicas,
                                   instance_output_dir=instance_output_dir)

                secs_since_last_ckpt = time.time()
                save_model(train_steps=step_counters["train"],
                           model_or_replicas=model_or_replicas,
                           instance_output_dir=instance_output_dir)
        #############################################################
        # Post Training Cleanup
        #######################################################################
        for writer in writers.values():
            writer.close()
Example #2
0
def main(argv):
    # Arguments and logging boilerplate
    if len(argv) > 1:
        raise RuntimeError(argv)

    absl_logging.use_python_logging()
    utils.log_module_args(LOGGER, argv[0])

    # Load a retriever config.
    retriever_config = tf_utils.REALMConfig(
        **utils.from_json_file(_FLAG_RETRIEVER_CONFIG_PATH.value))
    assert not _FLAG_USE_SUBSET.value

    # Preparation of the output path
    time_stamp = time.strftime("%Y%m%d-%H%M%S")
    target_path = os.path.join(_FLAG_OUTPUT_PATH.value, time_stamp.strip())
    if target_path[-1] != "/":
        target_path += "/"

    ##############################################################################
    # Setup devices and strategy
    ##############################################################################
    # Duration is pretty much instantaneous
    with utils.log_duration(LOGGER, "main", "Initializing devices"):
        tpu_config = tf_utils.init_tpus(local=_FLAG_TPU_IS_LOCAL.value,
                                        tpu_name=_FLAG_TPU_NAME.value)
        device_type = tf_utils.current_accelerator_type()
        LOGGER.debug("Devices: %s", str(tf_utils.devices_to_use()))
        if _FLAG_TPU_NAME.value and device_type == "CPU":
            raise RuntimeError("Device is CPU and we expected a TPU.")

        if device_type == "TPU":
            if tpu_config is None:
                raise RuntimeError("We should have a tpu_config.")
            strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        elif device_type == "GPU" or device_type == "CPU":
            strategy = tf.distribute.MirroredStrategy()
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        else:
            raise RuntimeError(device_type)

    ##############################################################################
    # Load the KILT ELI5 dataset.
    ##############################################################################
    # Takes a while
    eli5 = {}
    keys = ["train", "validation", "test"]
    gpt2_tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token

    with utils.log_duration(LOGGER, "main", "Loading the ELI5 datasets."):
        if _FLAG_DATASET_ROOT.value:
            for split in tqdm.tqdm(keys):
                load_path = os.path.join(_FLAG_DATASET_ROOT.value,
                                         "HuggingfaceDatasets",
                                         f"{split}_kilt_eli5.hf")
                with tf.device("/job:localhost"):
                    eli5[split] = datasets.load_from_disk(load_path)
        else:
            eli5 = datasets.load_dataset("kilt_tasks", "eli5")

    ##############################################################################
    # Load the dataset of the text that will be retrieved.
    ##############################################################################
    # Takes a long time
    with utils.log_duration(LOGGER, "Main", "Load the textual dataset"):
        # Extract the appropriate text
        # The buffer_size is taken from the original ORQA code.
        blocks_dataset = tf.data.TFRecordDataset(retriever_config.text_records,
                                                 buffer_size=512 * 1024 * 1024)
        blocks_dataset = blocks_dataset.batch(
            retriever_config.num_block_records, drop_remainder=False)
        blocks: tf.Tensor = tf.data.experimental.get_single_element(
            blocks_dataset)

    ############################################################################
    # Increase the number of maximum open file descriptors to make space
    # for all the shards.
    ############################################################################
    max_num_fd = _FLAG_NUM_SHARDS.value * 3 + _MIN_N_FD
    resource.setrlimit(resource.RLIMIT_NOFILE, (max_num_fd, max_num_fd))

    ############################################################################
    # Prepare the output files.
    ############################################################################
    writers = {}
    all_paths = {}

    for split in keys:
        maybe_subset = "_subset" if _FLAG_USE_SUBSET.value else ""
        # Prepare paths. They can't be in a generator. A function generator would be
        # fine though.
        paths = [
            os.path.join(target_path + maybe_subset, f"{split}_{i}.tfr")
            for i in range(_FLAG_NUM_SHARDS.value)
        ]
        all_paths[split] = paths
        writers[split] = []

        # Create The TFR writers.
        for i, path in enumerate(paths):
            writers[split].append(tf.io.TFRecordWriter(path))

    # Load the reference DB. We used to accidentally do this once per split :O
    with utils.log_duration(LOGGER, "main", "Loading the reference db."):
        checkpoint_path = os.path.join(retriever_config.query_embedder_path,
                                       "encoded", "encoded.ckpt")
        reference_db_device = tf_utils.device_mapping().CPUs[0].name
        with tf.device(reference_db_device):
            reference_db = tf_utils.load_reference_db(
                checkpoint_path,
                variable_name="block_emb",
            )

    ############################################################################
    # Prep the encoder and the tokenizer
    ############################################################################
    with utils.log_duration(LOGGER, "main",
                            "Loading the encoder model and the tokenizer."):
        with strategy.scope():
            query_encoder = hub.load(retriever_config.query_embedder_path,
                                     tags={})
        encode_fn = _make_encode_fn(query_encoder)
        encode_fn_strategy_run = make_encode_fn_strategy_run_fn(
            strategy=strategy,
            encode_fn=encode_fn,
        )

        vocab_file = os.path.join(retriever_config.query_embedder_path,
                                  "assets", "vocab.txt")
        utils.check_exists(vocab_file)
        do_lower_case = query_encoder.signatures["tokenization_info"](
        )["do_lower_case"]
        tokenization_info = dict(vocab_file=vocab_file,
                                 do_lower_case=do_lower_case)

        tokenizer, vocab_lookup_table = bert_utils.get_tf_tokenizer(
            query_encoder, tokenization_info)

    ############################################################################
    # Preprocess the dataset
    ############################################################################
    cls_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[CLS]")),
                           tf.int32)
    sep_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[SEP]")),
                           tf.int32)
    transform = _make_transform_fn(
        bert_tokenizer=tokenizer,
        bert_cls_token_id=cls_token_id,
        bert_sep_token_id=sep_token_id,
    )

    feature_dtypes = {
        constants.CTH5Fields.distances: tf.float32,
        constants.CTH5Fields.gpt2_retrieved_ids: tf.int32,
        constants.CTH5Fields.gpt2_answer_ids_inputs: tf.int32,
        constants.CTH5Fields.gpt2_question_ids_inputs: tf.int32,
    }

    with utils.log_duration(LOGGER, "main", "generating codes"):
        for split in keys:
            sample_count = 0
            eli5: Dict[str, datasets.Dataset]

            if split != "test":
                for_slices = dict(sample_id=eli5[split]["id"],
                                  question=eli5[split]["input"],
                                  answer=[
                                      sample[0]["answer"]
                                      for sample in eli5[split]["output"]
                                  ])
            else:
                for_slices = dict(
                    sample_id=eli5[split]["id"],
                    question=eli5[split]["input"],
                )

            ds = tf.data.Dataset.from_tensor_slices(for_slices)
            ds = ds.map(transform,
                        num_parallel_calls=tf.data.experimental.AUTOTUNE)

            ds = ds.apply(
                tf.data.experimental.dense_to_ragged_batch(batch_size))
            ds = ds.map(_squeeze,
                        num_parallel_calls=tf.data.experimental.AUTOTUNE)

            tqdm_inner = tqdm.tqdm(enumerate(ds),
                                   total=len(eli5[split]["id"]) //
                                   _FLAG_BATCH_SIZE.value,
                                   desc=f"Split `{split}`: Batches")

            for i, batch in tqdm_inner:
                features = collections.defaultdict(list)

                ######################################################################
                # Enforce the current real batch size
                ######################################################################
                current_batch_size = batch["sample_id"].shape[0]
                for k, v in batch.items():
                    utils.check_equal(v.shape[0], current_batch_size)
                ######################################################################

                gpt2_question_ids_inputs = _prep_field(batch["question"],
                                                       gpt2_tokenizer)
                utils.check_equal(gpt2_question_ids_inputs.dtype, np.int32)
                utils.check_equal(gpt2_question_ids_inputs.shape[0],
                                  current_batch_size)

                if split != "test":
                    gpt2_answer_ids_inputs = _prep_field(
                        batch["answer"], gpt2_tokenizer)
                    utils.check_equal(gpt2_answer_ids_inputs.dtype, np.int32)
                    utils.check_equal(gpt2_answer_ids_inputs.shape[0],
                                      current_batch_size)

                    assert len(gpt2_answer_ids_inputs.shape) == 2, (
                        gpt2_answer_ids_inputs.shape)

                ######################################################################
                # Save the gpt2 tokenized question and answer
                ######################################################################

                features[constants.CTH5Fields.gpt2_question_ids_inputs].extend(
                    gpt2_question_ids_inputs)

                if split != "test":
                    features[
                        constants.CTH5Fields.gpt2_answer_ids_inputs].extend(
                            gpt2_answer_ids_inputs)

                ######################################################################
                # Encode the samples.
                ######################################################################
                batch = strategy.experimental_distribute_values_from_function(
                    tf_utils.make_dict_distribute_fn(batch))

                embeddings = encode_fn_strategy_run(batch)
                embeddings = tf_utils.process_strat_output(
                    embeddings, "embeddings", strategy, current_batch_size)
                utils.check_isinstance(embeddings, ops.EagerTensor)
                utils.check_equal(embeddings.shape[0], current_batch_size)

                # pytype doesn't seem to see that we check the type
                utils.check_equal(embeddings.shape[1],
                                  _FLAG_EMBEDDING_DEPTH.value)  # pytype: disable=attribute-error

                ######################################################################
                # Retrieve.
                ######################################################################
                # Do exact retrieval
                with tf.device(reference_db_device):
                    top_k, inner_prods = tf_utils.mips_exact_search(
                        embeddings, _FLAG_NUM_RETRIEVALS.value, reference_db)

                # Collate the results
                top_k = tf_utils.process_strat_output(top_k, "top_k", strategy,
                                                      current_batch_size)

                # Check the shapes
                utils.check_equal(
                    inner_prods.shape,
                    (current_batch_size, _FLAG_NUM_RETRIEVALS.value))
                utils.check_equal(
                    top_k.shape,
                    (current_batch_size, _FLAG_NUM_RETRIEVALS.value))

                # Save the distances
                features[constants.CTH5Fields.distances].extend(inner_prods)

                # Retrieve the text fields associated to the indices
                gathered = tf.gather(blocks, top_k).numpy()
                utils.check_equal(gathered.shape[0], current_batch_size)
                utils.check_equal(gathered.shape[1],
                                  _FLAG_NUM_RETRIEVALS.value)

                retrievals = []
                for index_in_batch in range(current_batch_size):
                    # Put the appropriate byte strings in a list
                    local_gathered = gathered[index_in_batch].tolist()
                    utils.check_equal(len(local_gathered),
                                      _FLAG_NUM_RETRIEVALS.value)
                    # Decode to utf-8
                    local_gathered = [
                        sample.decode() for sample in local_gathered
                    ]
                    # Encode to GPT2 BPE
                    token_ids = np.array(
                        gpt2_tokenizer.batch_encode_plus(
                            local_gathered,
                            padding="max_length",
                            truncation=True,
                        ).input_ids)

                    # Make sure no line is empty
                    # TODO(julesgm): Maybe optional
                    for line in token_ids:
                        assert not np.all(line == 0), line

                    # Convert the eos_tokens
                    token_ids[token_ids == gpt2_tokenizer.eos_token_id] = -1

                    # Save the retrievals
                    retrievals.append(token_ids)

                # Save the feature
                features[constants.CTH5Fields.gpt2_retrieved_ids] = retrievals

                utils.check_equal(
                    retrievals[0].shape,
                    (_FLAG_NUM_RETRIEVALS.value, _FLAG_CONTEXT_SIZE.value))

                for k, v in features.items():
                    utils.check_equal(len(v), current_batch_size)

                for index_in_batch in range(current_batch_size):
                    feature_dict = {}
                    for feature_k, feature_v in features.items():
                        # Cast the feature to its appropriate dtype
                        casted_feats = tf.cast(feature_v[index_in_batch],
                                               feature_dtypes[feature_k])
                        # Serialize the tensor to bytes
                        feature_bytes = tf.io.serialize_tensor(casted_feats)
                        # Build a bytes list tf.train.Feature object,
                        # the serialization tree node
                        feature_dict[feature_k] = _bytes_feature(feature_bytes)

                    # Create the serialization tree root
                    # Expects a list of features
                    feature = tf.train.Features(feature=feature_dict)
                    # Expects a tf.train.Features object
                    example_obj = tf.train.Example(features=feature)

                    # Serialize that to bytes
                    serialized_example = example_obj.SerializeToString()

                    # Write the bytes
                    # TODO(julesgm): Parallelize this with a thread or a process pool &
                    #   futures.
                    writers[split][sample_count %
                                   _FLAG_NUM_SHARDS.value].write(
                                       serialized_example)
                    sample_count += 1

                if sample_count % 1000 == 0:
                    LOGGER.debug("Paths: %s", str(all_paths[split][0]))

            LOGGER.debug("Flushing and closing the `%s` writers", split)
            for writer in tqdm.tqdm(writers[split]):
                writer.flush()
                writer.close()

    LOGGER.debug("Done.")
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv)
    absl_logging.use_python_logging()
    utils.log_module_args(LOGGER, argv[0])

    retriever_config = tf_utils.REALMSave(
        **utils.from_json_file(_FLAG_RETRIEVER_CONFIG_PATH.value))
    assert not _FLAG_USE_SUBSET.value

    time_stamp = time.strftime("%Y%m%d-%H%M%S")
    target_path = os.path.join(_FLAG_OUTPUT_PATH.value, time_stamp.strip())
    if target_path[-1] != "/":
        target_path += "/"

    ##############################################################################
    # Setup devices and strategy
    ##############################################################################
    with utils.log_duration(LOGGER, "main", "Initializing devices"):
        tpu_config = tf_utils.init_tpus()
        device_type = tf_utils.current_accelerator_type()
        LOGGER.debug("Devices: %s", str(tf_utils.devices_to_use()))

        if device_type == "TPU":
            if tpu_config is None:
                raise RuntimeError("We should have a tpu_config.")
            strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        elif device_type == "GPU" or device_type == "CPU":
            strategy = tf.distribute.MirroredStrategy()
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        else:
            raise RuntimeError(device_type)

    ##############################################################################
    # Load the dataset.
    ##############################################################################
    eli5 = {}
    keys = ["train", "eval", "test"]
    gpt2_tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token

    with utils.log_duration(LOGGER, "main", "Loading the ELI5 datasets."):
        for split in tqdm.tqdm(keys):
            load_path = os.path.join(_FLAG_DATASET_ROOT.value,
                                     "HuggingfaceDatasets",
                                     f"{split}_kilt_eli5.hf")
            with tf.device("/job:localhost"):
                eli5[split] = datasets.load_from_disk(load_path)

    ##############################################################################
    #
    ##############################################################################
    with utils.log_duration(LOGGER, "Main", "Load the textual dataset"):
        # Extract the appropriate text
        # The buffer_size is taken from the original ORQA code.
        blocks_dataset = tf.data.TFRecordDataset(retriever_config.text_records,
                                                 buffer_size=512 * 1024 * 1024)
        blocks_dataset = blocks_dataset.batch(
            retriever_config.num_block_records, drop_remainder=True)
        blocks = tf.data.experimental.get_single_element(blocks_dataset)

    ############################################################################
    # Prepare the output file.
    ############################################################################
    writers = {}

    all_paths = {}
    for split in keys:
        maybe_subset = "_subset" if _FLAG_USE_SUBSET.value else ""
        paths = [
            os.path.join(target_path + maybe_subset, f"{split}_{i}.tfr")
            for i in range(_FLAG_NUM_SHARDS.value)
        ]
        all_paths[split] = paths
        writers[split] = [tf.io.TFRecordWriter(filename) for filename in paths]

        with utils.log_duration(LOGGER, "main", "Loading the reference db."):
            checkpoint_path = os.path.join(
                retriever_config.query_embedder_path, "encoded",
                "encoded.ckpt")

            reference_db_device = tf_utils.device_mapping().CPUs[0].name
            with tf.device(reference_db_device):
                reference_db = tf_utils.load_reference_db(
                    checkpoint_path,
                    variable_name="block_emb",
                )

    ############################################################################
    # Prep the encoder and the tokenizer
    ############################################################################
    with utils.log_duration(LOGGER, "main",
                            "Loading the encoder model and the tokenizer."):
        with strategy.scope():
            query_encoder = hub.load(retriever_config.query_embedder_path,
                                     tags={})
        encode_fn = _make_encode_fn(query_encoder)
        encode_fn_strategy_run = make_encode_fn_strategy_run_fn(
            strategy=strategy,
            encode_fn=encode_fn,
        )

        vocab_file = os.path.join(retriever_config.query_embedder_path,
                                  "assets", "vocab.txt")
        utils.check_exists(vocab_file)
        do_lower_case = query_encoder.signatures["tokenization_info"](
        )["do_lower_case"]
        tokenization_info = dict(vocab_file=vocab_file,
                                 do_lower_case=do_lower_case)

        tokenizer, vocab_lookup_table = bert_utils.get_tf_tokenizer(
            query_encoder, tokenization_info)

    ############################################################################
    # Preprocess the dataset
    ############################################################################
    cls_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[CLS]")),
                           tf.int32)
    sep_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[SEP]")),
                           tf.int32)
    transform = _make_transform_fn(
        bert_tokenizer=tokenizer,
        bert_cls_token_id=cls_token_id,
        bert_sep_token_id=sep_token_id,
    )

    feature_dtypes = {
        constants.CTH5Fields.distances: tf.float32,
        constants.CTH5Fields.gpt2_retrieved_ids: tf.int32,
        constants.CTH5Fields.gpt2_answer_ids_inputs: tf.int32,
        constants.CTH5Fields.gpt2_question_ids_inputs: tf.int32,
    }

    with utils.log_duration(LOGGER, "main", "generating codes"):
        for split in keys:
            sample_count = 0
            eli5: Dict[str, datasets.Dataset]

            if split != "test":
                for_slices = dict(sample_id=eli5[split]["id"],
                                  question=eli5[split]["input"],
                                  answer=[
                                      sample["answer"][0]
                                      for sample in eli5[split]["output"]
                                  ])
            else:
                for_slices = dict(
                    sample_id=eli5[split]["id"],
                    question=eli5[split]["input"],
                )

            ds = tf.data.Dataset.from_tensor_slices(for_slices)
            ds = ds.map(transform,
                        num_parallel_calls=tf.data.experimental.AUTOTUNE)

            ds = ds.apply(
                tf.data.experimental.dense_to_ragged_batch(batch_size))
            ds = ds.map(_squeeze,
                        num_parallel_calls=tf.data.experimental.AUTOTUNE)

            tqdm_inner = tqdm.tqdm(enumerate(ds),
                                   total=len(eli5[split]["id"]) //
                                   _FLAG_BATCH_SIZE.value,
                                   desc=f"Split `{split}`: Batches")

            for i, batch in tqdm_inner:
                features = collections.defaultdict(list)

                ######################################################################
                # Enforce the current real batch size
                ######################################################################
                current_batch_size = batch["sample_id"].shape[0]
                for k, v in batch.items():
                    utils.check_equal(v.shape[0], current_batch_size)
                ######################################################################

                gpt2_question_ids_inputs = _prep_field(batch["question"],
                                                       gpt2_tokenizer)
                utils.check_equal(gpt2_question_ids_inputs.dtype, np.int32)
                utils.check_equal(gpt2_question_ids_inputs.shape[0],
                                  current_batch_size)

                if split != "test":
                    gpt2_answer_ids_inputs = _prep_field(
                        batch["answer"], gpt2_tokenizer)
                    utils.check_equal(gpt2_answer_ids_inputs.dtype, np.int32)
                    utils.check_equal(gpt2_answer_ids_inputs.shape[0],
                                      current_batch_size)

                    assert len(gpt2_answer_ids_inputs.shape) == 2, (
                        gpt2_answer_ids_inputs.shape)

                ######################################################################
                # Save the gpt2 tokenized question and answer
                ######################################################################

                features[constants.CTH5Fields.gpt2_question_ids_inputs].extend(
                    gpt2_question_ids_inputs)

                if split != "test":
                    features[
                        constants.CTH5Fields.gpt2_answer_ids_inputs].extend(
                            gpt2_answer_ids_inputs)

                ######################################################################
                # Encode the samples.
                ######################################################################
                batch = strategy.experimental_distribute_values_from_function(
                    tf_utils.make_dict_distribute_fn(batch))

                embeddings = encode_fn_strategy_run(batch)
                embeddings = tf_utils.process_strat_output(
                    embeddings, "embeddings", strategy, current_batch_size)
                utils.check_isinstance(embeddings, ops.EagerTensor)
                utils.check_equal(embeddings.shape[0], current_batch_size)

                # pytype doesn't seem to see that we check the type
                utils.check_equal(embeddings.shape[1],
                                  _FLAG_EMBEDDING_DEPTH.value)  # pytype: disable=attribute-error

                ######################################################################
                # Retrieve.
                ######################################################################
                with tf.device(reference_db_device):
                    top_k, inner_prods = tf_utils.mips_exact_search(
                        embeddings, _FLAG_NUM_RETRIEVALS.value, reference_db)
                top_k = tf_utils.process_strat_output(top_k, "top_k", strategy,
                                                      current_batch_size)
                utils.check_equal(
                    inner_prods.shape,
                    (current_batch_size, _FLAG_NUM_RETRIEVALS.value))
                utils.check_equal(
                    top_k.shape,
                    (current_batch_size, _FLAG_NUM_RETRIEVALS.value))

                features[constants.CTH5Fields.distances].extend(inner_prods)

                gathered = tf.gather(blocks, top_k).numpy()
                utils.check_equal(gathered.shape[0], current_batch_size)
                retrievals = []
                for j in range(gathered.shape[0]):
                    local_gathered = gathered[j].tolist()
                    utils.check_equal(len(local_gathered),
                                      _FLAG_NUM_RETRIEVALS.value)
                    local_gathered = [
                        sample.decode() for sample in local_gathered
                    ]
                    token_ids = np.array(
                        gpt2_tokenizer.batch_encode_plus(
                            local_gathered,
                            padding="max_length",
                            truncation=True,
                        ).input_ids)
                    for line in token_ids:
                        assert not np.all(line == 0), line

                    token_ids[token_ids == gpt2_tokenizer.eos_token_id] = -1
                    retrievals.append(token_ids)
                features[constants.CTH5Fields.gpt2_retrieved_ids] = retrievals

                utils.check_equal(
                    retrievals[0].shape,
                    (_FLAG_NUM_RETRIEVALS.value, _FLAG_CONTEXT_SIZE.value))

                for k, v in features.items():
                    utils.check_equal(len(v), current_batch_size)

                for k in range(current_batch_size):
                    feature = tf.train.Features(
                        feature={
                            k: _bytes_feature(
                                tf.io.serialize_tensor(
                                    tf.cast(v[k], feature_dtypes[k])))
                            for k, v in features.items()
                        })

                    writers[split][
                        sample_count % _FLAG_NUM_SHARDS.value].write(
                            tf.train.Example(
                                features=feature).SerializeToString())
                    sample_count += 1
                if sample_count % 1000 == 0:
                    LOGGER.debug("Paths: %s", str(all_paths[split][0]))

    LOGGER.debug("Done.")
Example #4
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv)
    absl_logging.use_python_logging()
    retriever_config = tf_utils.REALMSave(
        **utils.from_json_file(_FLAG_RETRIEVER_CONFIG_PATH.value))

    extra = "_FROM_SUBSET" if _FLAG_USE_SUBSET.value else ""
    time_stamp = time.strftime("%Y%m%d-%H%M%S")
    target_path = os.path.join(_FLAG_OUTPUT_PATH.value,
                               time_stamp + extra).strip()
    if target_path[-1] != "/":
        target_path += "/"

    ##############################################################################
    # Setup devices and strategy
    ##############################################################################
    with utils.log_duration(LOGGER, "main", "Initializing devices"):
        tpu_config = tf_utils.init_tpus()
        device_type = tf_utils.current_accelerator_type()
        LOGGER.debug("Devices: %s", str(tf_utils.devices_to_use()))

        if device_type == "TPU":
            if tpu_config is None:
                raise RuntimeError("We should have a tpu_config.")
            strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        elif device_type == "GPU" or device_type == "CPU":
            strategy = tf.distribute.MirroredStrategy()
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        else:
            raise RuntimeError(device_type)

    ##############################################################################
    # Load the dataset.
    ##############################################################################
    eli5 = {}
    keys = ["train", "eval", "test"]
    gpt2_tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token

    with utils.log_duration(LOGGER, "main", "Loading the ELI5 datasets."):
        for split in tqdm.tqdm(keys):
            load_path = os.path.join(_FLAGS_DATASET_ROOT.value,
                                     "HuggingfaceDatasets",
                                     f"{split}_kilt_eli5.hf")
            with tf.device("/job:localhost"):
                eli5[split] = datasets.load_from_disk(load_path)

    if _FLAG_USE_SUBSET.value:
        _warn_subset()

    ##############################################################################
    #
    ##############################################################################
    with utils.log_duration(LOGGER, "Main", "Load the textual dataset"):
        # Extract the appropriate text
        # The buffer_size is taken from the original ORQA code.
        blocks_dataset = tf.data.TFRecordDataset(retriever_config.text_records,
                                                 buffer_size=512 * 1024 * 1024)
        blocks_dataset = blocks_dataset.batch(
            retriever_config.num_block_records, drop_remainder=True)
        blocks = tf.data.experimental.get_single_element(blocks_dataset)

    with tempfile.TemporaryDirectory() as tmp_dir:
        ############################################################################
        # Prepare the output file.
        ############################################################################
        tmp_dir = pathlib.Path(tmp_dir)
        h5_output_path = tmp_dir / "codes.h5"
        output_file = h5py.File(h5_output_path, "w")
        flags_dict = {
            flag.name: flag.value
            for flag in flags.FLAGS.flags_by_module_dict()[argv[0]]
        }
        utils.to_json_file(tmp_dir / "params.json", flags_dict)

        for split in keys:
            with utils.log_duration(
                    LOGGER, "main",
                    "Creating the output hdf5 file, embeddings."):
                num_entries = len(eli5[split]["id"])
                if _FLAG_USE_SUBSET.value:
                    num_entries = min(num_entries, _FLAG_SUBSET_AMOUNT.value)
                split_group = output_file.create_group(split)

            with utils.log_duration(
                    LOGGER, "main",
                    "Creating the output hdf5 file, retrieval."):
                split_group.create_dataset(
                    constants.CTH5Fields.distances,
                    shape=(num_entries, _FLAG_NUM_RETRIEVALS.value),
                    dtype=np.float32,
                )
                split_group.create_dataset(
                    constants.CTH5Fields.gpt2_question_ids_inputs,
                    shape=(num_entries, _FLAG_CONTEXT_SIZE.value),
                    dtype=np.int32)
                if split != "test":
                    split_group.create_dataset(
                        constants.CTH5Fields.gpt2_answer_ids_inputs,
                        shape=(num_entries, _FLAG_CONTEXT_SIZE.value),
                        dtype=np.int32)

                split_group.create_dataset(
                    constants.CTH5Fields.gpt2_retrieved_ids,
                    shape=(
                        num_entries,
                        _FLAG_NUM_RETRIEVALS.value,
                        _FLAG_MAX_LENGTH_RETRIEVALS.value,
                    ),
                    dtype=np.int32)

            with utils.log_duration(LOGGER, "main",
                                    "Loading the reference db."):
                checkpoint_path = os.path.join(
                    retriever_config.query_embedder_path, "encoded",
                    "encoded.ckpt")

                reference_db_device = tf_utils.device_mapping().CPUs[0].name
                with tf.device(reference_db_device):
                    reference_db = tf_utils.load_reference_db(
                        checkpoint_path,
                        variable_name="block_emb",
                    )

        ############################################################################
        # Prep the encoder and the tokenizer
        ############################################################################
        with utils.log_duration(
                LOGGER, "main",
                "Loading the encoder model and the tokenizer."):
            with strategy.scope():
                query_encoder = hub.load(retriever_config.query_embedder_path,
                                         tags={})
            encode_fn = _make_encode_fn(query_encoder)
            encode_fn_strategy_run = _make_encode_fn_strategy_run_fn(
                strategy=strategy,
                encode_fn=encode_fn,
            )

            vocab_file = os.path.join(retriever_config.query_embedder_path,
                                      "assets", "vocab.txt")
            utils.check_exists(vocab_file)
            do_lower_case = query_encoder.signatures["tokenization_info"](
            )["do_lower_case"]
            tokenization_info = dict(vocab_file=vocab_file,
                                     do_lower_case=do_lower_case)

            tokenizer, vocab_lookup_table = bert_utils.get_tf_tokenizer(
                query_encoder, tokenization_info)

        ############################################################################
        # Preprocess the dataset
        ############################################################################

        cls_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[CLS]")),
                               tf.int32)
        sep_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[SEP]")),
                               tf.int32)
        transform = _make_transform_fn(
            bert_tokenizer=tokenizer,
            bert_cls_token_id=cls_token_id,
            bert_sep_token_id=sep_token_id,
        )

        with utils.log_duration(LOGGER, "main", "generating codes"):
            tqdm_splits = tqdm.tqdm(keys)
            for split in tqdm_splits:
                tqdm_splits.set_description(f"Split `{split}`")
                eli5: Dict[str, datasets.Dataset]
                write_start = 0

                if _FLAG_USE_SUBSET.value:
                    _warn_subset(tqdm_splits)
                    eli5[split] = eli5[split][:_FLAG_SUBSET_AMOUNT.value]
                    utils.check_operator(operator.le, len(eli5[split]["id"]),
                                         _FLAG_SUBSET_AMOUNT.value)
                    utils.check_operator(operator.le,
                                         len(eli5[split]["input"]),
                                         _FLAG_SUBSET_AMOUNT.value)
                else:
                    utils.check_equal(len(eli5[split]), len(eli5[split]["id"]))
                    utils.check_equal(len(eli5[split]),
                                      len(eli5[split]["input"]))

                if split != "test":
                    for_slices = dict(sample_id=eli5[split]["id"],
                                      question=eli5[split]["input"],
                                      answer=[
                                          sample["answer"][0]
                                          for sample in eli5[split]["output"]
                                      ])
                else:
                    for_slices = dict(
                        sample_id=eli5[split]["id"],
                        question=eli5[split]["input"],
                    )

                ds = tf.data.Dataset.from_tensor_slices(for_slices)
                ds = ds.map(transform,
                            num_parallel_calls=tf.data.experimental.AUTOTUNE)

                ds = ds.apply(
                    tf.data.experimental.dense_to_ragged_batch(batch_size))
                ds = ds.map(_squeeze,
                            num_parallel_calls=tf.data.experimental.AUTOTUNE)

                tqdm_inner = tqdm.tqdm(enumerate(ds),
                                       total=len(eli5[split]["id"]) //
                                       _FLAG_BATCH_SIZE.value,
                                       desc=f"Split `{split}`: Batches")

                for i, batch in tqdm_inner:
                    ######################################################################
                    # Enforce the current real batch size
                    ######################################################################
                    current_batch_size = batch["sample_id"].shape[0]
                    for k, v in batch.items():
                        utils.check_equal(v.shape[0], current_batch_size)
                    ######################################################################

                    gpt2_question_ids_inputs = _prep_field(
                        batch["question"], gpt2_tokenizer)
                    utils.check_equal(gpt2_question_ids_inputs.dtype, np.int32)
                    utils.check_equal(gpt2_question_ids_inputs.shape[0],
                                      current_batch_size)

                    if split != "test":
                        gpt2_answer_ids_inputs = _prep_field(
                            batch["answer"], gpt2_tokenizer)
                        utils.check_equal(gpt2_answer_ids_inputs.dtype,
                                          np.int32)
                        utils.check_equal(gpt2_answer_ids_inputs.shape[0],
                                          current_batch_size)

                        assert len(gpt2_answer_ids_inputs.shape) == 2, (
                            gpt2_answer_ids_inputs.shape)

                    ######################################################################
                    # Save the gpt2 tokenized question and answer
                    ######################################################################
                    end = write_start + current_batch_size

                    utils.check_equal(
                        output_file[split][
                            constants.CTH5Fields.gpt2_question_ids_inputs]
                        [write_start:end].shape[0], current_batch_size)
                    output_file[split][
                        constants.CTH5Fields.gpt2_question_ids_inputs][
                            write_start:end] = gpt2_question_ids_inputs

                    if split != "test":
                        output_file[split][
                            constants.CTH5Fields.gpt2_answer_ids_inputs][
                                write_start:end] = gpt2_answer_ids_inputs

                    ######################################################################
                    # Encode the samples.
                    ######################################################################
                    batch = strategy.experimental_distribute_values_from_function(
                        tf_utils.make_dict_distribute_fn(batch))

                    embeddings = encode_fn_strategy_run(batch)
                    embeddings = tf_utils.process_strat_output(
                        embeddings, "embeddings", strategy, current_batch_size)
                    utils.check_isinstance(embeddings, ops.EagerTensor)
                    utils.check_equal(embeddings.shape[0], current_batch_size)

                    # pytype doesn't seem to see that we check the type
                    utils.check_equal(embeddings.shape[1],
                                      _FLAG_EMBEDDING_DEPTH.value)  # pytype: disable=attribute-error

                    ######################################################################
                    # Retrieve.
                    ######################################################################
                    with tf.device(reference_db_device):
                        top_k, inner_prods = tf_utils.mips_exact_search(
                            embeddings, _FLAG_NUM_RETRIEVALS.value,
                            reference_db)
                    top_k = tf_utils.process_strat_output(
                        top_k, "top_k", strategy, current_batch_size)
                    utils.check_equal(
                        inner_prods.shape,
                        (current_batch_size, _FLAG_NUM_RETRIEVALS.value))
                    utils.check_equal(
                        top_k.shape,
                        (current_batch_size, _FLAG_NUM_RETRIEVALS.value))

                    output_file[split]["distances"][
                        write_start:end] = inner_prods

                    gathered = tf.gather(blocks, top_k).numpy()
                    utils.check_equal(gathered.shape[0], current_batch_size)

                    utils.check_equal(write_start + gathered.shape[0], end)
                    for j in range(gathered.shape[0]):
                        local_gathered = gathered[j].tolist()
                        utils.check_equal(len(local_gathered),
                                          _FLAG_NUM_RETRIEVALS.value)
                        local_gathered = [
                            sample.decode() for sample in local_gathered
                        ]
                        token_ids = np.array(
                            gpt2_tokenizer.batch_encode_plus(
                                local_gathered,
                                padding="max_length",
                                truncation=True,
                            ).input_ids)
                        for line in token_ids:
                            assert not np.all(line == 0), line

                        token_ids[token_ids ==
                                  gpt2_tokenizer.eos_token_id] = -1
                        output_file[split][
                            constants.CTH5Fields.gpt2_retrieved_ids][
                                write_start +
                                j] = token_ids[:, :_FLAG_MAX_LENGTH_RETRIEVALS.
                                               value]

                    write_start += current_batch_size
        ############################################################################
        # Upload the results to GCS
        ############################################################################
        LOGGER.debug("DONE WITH THE PRODUCTION")
        output_file.close()
        with utils.log_duration(LOGGER, "main", "gsutil transfer"):
            command = [
                "/root/google-cloud-sdk/bin/gsutil", "-m", "cp", "-r",
                str(tmp_dir / "*"), target_path
            ]
            LOGGER.debug("Command: %s", " ".join(command))
            subprocess.check_call(command)
        LOGGER.debug("ALL DONE")