def default_trainer_params(cls): p = super().default_trainer_params() p.gen.train = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "conll_txt_val_small.lst")]) p.gen.val = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "conll_txt_val_small.lst")]) p.scenario.data.tags = Resource( workdir_path(__file__, "data", "tags", "tags_conll.txt")) return p
def default_trainer_params(cls): p = super().default_trainer_params() p.gen.train = ListsFileGeneratorParams(lists=[ workdir_path(__file__, "lists", "conll_json_val_small.lst") ]) p.gen.val = ListsFileGeneratorParams(lists=[ workdir_path(__file__, "lists", "conll_json_val_small.lst") ]) return p
def default_trainer_params(cls): p = super().default_trainer_params() p = set_test_trainer_params(p) p.gen.train = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "dewebcrawl_debug.lst")]) p.gen.val = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "dewebcrawl_debug.lst")]) return p
def default_trainer_params(cls): p = super().default_trainer_params() p = set_test_trainer_params(p) p.gen.train = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "ler_debug.lst")]) p.gen.val = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "ler_debug.lst")]) p.scenario.data.tags = Resource( workdir_path(__file__, "data", "tags", "ler_fg.txt")) return p
def default_trainer_params(cls): p = super().default_trainer_params() p.scenario.data.segment_train = True p.gen.train = ListsFileGeneratorParams(lists=[ workdir_path(__file__, "lists", "dewebcrawl_seg_debug.lst") ]) p.gen.val = ListsFileGeneratorParams(lists=[ workdir_path(__file__, "lists", "dewebcrawl_seg_debug.lst") ]) return p
def default_trainer_params(cls): p = super().default_trainer_params() p = set_test_trainer_params(p) p.gen.train = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "paifile_small.lst")]) p.gen.val = ListsFileGeneratorParams( lists=[workdir_path(__file__, "lists", "paifile_small.lst")]) p.scenario.data.tags = Resource( workdir_path(__file__, "data", "tags", "paifile_tags.txt")) p.scenario.data.paifile_input = True return p
def default_trainer_params(cls): p = super().default_trainer_params() p = set_test_trainer_params(p) p.scenario.data.tags = Resource( workdir_path(__file__, "data", "tags", "tags_germeval_14.txt")) # p.gen = FromDatasetsTrainerGeneratorParams # p.gen.train = ListsFileGeneratorParams(lists=[workdir_path(__file__, 'lists', 'ler_debug.lst')]) # p.gen.val = ListsFileGeneratorParams(lists=[workdir_path(__file__, 'lists', 'ler_debug.lst')]) return p
def set_test_trainer_params(p): p.random_seed = 123 p.gen.setup.train.batch_size = 2 p.gen.setup.train.prefetch = 1 p.gen.setup.train.num_processes = 1 p.gen.setup.val.batch_size = 2 p.gen.setup.val.prefetch = 1 p.gen.setup.val.num_processes = 1 data = p.scenario.data data.tokenizer = Resource(workdir_path(__file__, "data", "tokenizer", "tokenizer_de.subwords")) model = p.scenario.model model.d_model = 2 model.dff = 2 model.num_layers = 1 model.num_heads = 2 return p
def setUp(self) -> None: os.chdir(workdir_path(__file__))