from tfbldr.nodes import Bilinear from tfbldr.nodes import ReLU from tfbldr.nodes import LSTMCell from tfbldr.nodes import VqEmbedding from tfbldr.datasets import list_iterator from tfbldr import get_params_dict from tfbldr import run_loop from tfbldr import scan from tfbldr.datasets import make_sinewaves import tensorflow as tf import numpy as np from collections import namedtuple, defaultdict #sines = make_sinewaves(50, 40, harmonic=True) sines = make_sinewaves(50, 40, square=True) #sines = make_sinewaves(50, 40) train_sines = sines[:, ::2] train_sines = [train_sines[:, i] for i in range(train_sines.shape[1])] valid_sines = sines[:, 1::2] valid_sines = [valid_sines[:, i] for i in range(valid_sines.shape[1])] """ f, axarr = plt.subplots(4, 1) axarr[0].plot(train_sines[0].ravel()) axarr[1].plot(valid_sines[0].ravel()) axarr[2].plot(train_sines[1].ravel()) axarr[3].plot(valid_sines[0].ravel()) plt.savefig("tmp") """ train_itr_random_state = np.random.RandomState(1122)
parser = argparse.ArgumentParser() parser.add_argument('direct_model', nargs=1, default=None) parser.add_argument('--model', dest='model_path', type=str, default=None) parser.add_argument('--seed', dest='seed', type=int, default=1999) args = parser.parse_args() if args.model_path == None: if args.direct_model == None: raise ValueError( "Must pass first positional argument as model, or --model argument, e.g. summary/experiment-0/models/model-7" ) else: model_path = args.direct_model[0] else: model_path = args.model_path sines = make_sinewaves(50, 40) train_sines = sines[:, ::2] train_sines = [train_sines[:, i] for i in range(train_sines.shape[1])] valid_sines = sines[:, 1::2] valid_sines = [valid_sines[:, i] for i in range(valid_sines.shape[1])] random_state = np.random.RandomState(args.seed) config = tf.ConfigProto(device_count={'GPU': 0}) n_hid = 100 batch_size = 10 with tf.Session(config=config) as sess: saver = tf.train.import_meta_graph(model_path + '.meta') saver.restore(sess, model_path)
from tfbldr.nodes import Linear from tfbldr.nodes import GRUCell from tfbldr.nodes import ReLU from tfbldr.nodes import VqEmbedding from tfbldr.datasets import list_iterator from tfbldr import get_params_dict from tfbldr import run_loop from tfbldr import scan from tfbldr.datasets import make_sinewaves import tensorflow as tf import numpy as np from collections import namedtuple, defaultdict sines = make_sinewaves(50, 40, harmonic=True) #sines = make_sinewaves(50, 40) train_sines = sines[:, ::2] train_sines = [train_sines[:, i] for i in range(train_sines.shape[1])] valid_sines = sines[:, 1::2] valid_sines = [valid_sines[:, i] for i in range(valid_sines.shape[1])] """ f, axarr = plt.subplots(4, 1) axarr[0].plot(train_sines[0].ravel()) axarr[1].plot(valid_sines[0].ravel()) axarr[2].plot(train_sines[1].ravel()) axarr[3].plot(valid_sines[0].ravel()) plt.savefig("tmp") """ train_itr_random_state = np.random.RandomState(1122)