def decoder(inputs, decode_layer): net = tflearn.fully_connected(inputs, (side // 2**2)**2 * 32, name='DecFC1') d = tf.transpose(net.W) print "Decoder Weights shape", d.get_shape() net = tflearn.batch_normalization(net, name='DecBN1') net = tflearn.elu(net) print "========================" print "dec-L1", net.get_shape() print "========================" net = tflearn.reshape(net, (-1, side // 2**2, side // 2**2, 32)) net = tflearn.conv_2d(net, 32, 3, name='DecConv1') net = tflearn.batch_normalization(net, name='DecBN2') net = tflearn.elu(net) print "========================" print "dec-L2", net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, 16, 3, [side // 2, side // 2], strides=2, padding='same', name='DecConvT1') net = tflearn.batch_normalization(net, name='DecBN3') net = tflearn.elu(net) print "========================" print "dec-L3", net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, name='DecConv2') net = tflearn.batch_normalization(net, name='DecBN4') net = tflearn.elu(net) print "========================" print "dec-L4", net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, channel, 3, [side, side], strides=2, padding='same', activation='sigmoid', name='DecConvT2') print "========================" print "output layer", net.get_shape() print "========================" return [net, d]
def encoder(inputs, hidden_layer): nb_feature = 64 net = tflearn.conv_2d(inputs, 16, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L1", net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L2", net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L3", net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L4", net.get_shape() print "========================" net = tflearn.flatten(net) #net = tflearn.fully_connected(net, nb_feature,activation="sigmoid") net = tflearn.fully_connected(net, nb_feature) h = net.W print "Encoder Weights shape", h.get_shape() net = tflearn.batch_normalization(net) net = tflearn.sigmoid(net) print "========================" print "hidden", net.get_shape() print "========================" return [net, h]
def decoder(inputs): net = tflearn.fully_connected(inputs, 1200 * 32, name='DecFC1') net = tflearn.batch_normalization(net, name='DecBN1') net = tflearn.elu(net) print "========================" print "dec-L1",net.get_shape() print "========================" net = tflearn.reshape(net, (-1, side1 // 2**2, side2 // 2**2, 32)) net = tflearn.conv_2d(net, 32, 3, name='DecConv1') net = tflearn.batch_normalization(net, name='DecBN2') net = tflearn.elu(net) print "========================" print "dec-L2",net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, 16, 3, [side1 // 2, side2 // 2], strides=2, padding='same', name='DecConvT1') net = tflearn.batch_normalization(net, name='DecBN3') net = tflearn.elu(net) print "========================" print "dec-L3",net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, name='DecConv2') net = tflearn.batch_normalization(net, name='DecBN4') net = tflearn.elu(net) print "========================" print "dec-L4",net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, channel, 3, [side1, side2], strides=2, padding='same', activation='sigmoid', name='DecConvT2') decode_layer = net print "========================" print "output layer",net.get_shape() print "========================" return [net,decode_layer]
def encoder(inputs,hidden_layer): net = tflearn.conv_2d(inputs, 16, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L1",net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L2",net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L3",net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L4",net.get_shape() print "========================" net = tflearn.flatten(net) #net = tflearn.fully_connected(net, nb_feature,activation="sigmoid") net = tflearn.fully_connected(net, nb_feature) hidden_layer = net net = tflearn.batch_normalization(net) net = tflearn.sigmoid(net) print "========================" print "hidden",net.get_shape() print "========================" return [net,hidden_layer]
def encoder(self,inputs,hidden_layer): net = tflearn.conv_2d(inputs, 16, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L1",net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L2",net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L3",net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L4",net.get_shape() print "========================" net = tflearn.flatten(net) #net = tflearn.fully_connected(net, nb_feature,activation="sigmoid") net = tflearn.fully_connected(net, self.instance_dim) hidden_layer = net net = tflearn.batch_normalization(net) net = tflearn.sigmoid(net) print "========================" print "hidden",net.get_shape() print "========================" return [net,hidden_layer]
def encoder(inputs): net = tflearn.conv_2d(inputs, 16, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L1",net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L2",net.get_shape() print "========================" net = tflearn.conv_2d(net, 32, 3, strides=2) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "enc-L3",net.get_shape() net = tflearn.conv_2d(net, 32, 3, strides=1) net = tflearn.batch_normalization(net) net = tflearn.elu(net) print "========================" print "enc-L4",net.get_shape() print "========================" net = tflearn.flatten(net) net = tflearn.fully_connected(net, nb_feature) hidden_layer = net net = tflearn.batch_normalization(net) net = tflearn.sigmoid(net) print "========================" print "enc-hidden_L",net.get_shape() print "========================" return [net,hidden_layer]
def decoder(self,inputs,decode_layer): net = tflearn.fully_connected(inputs, self.hidden_dim, name='DecFC1') net = tflearn.batch_normalization(net, name='DecBN1') net = tflearn.elu(net) print "========================" print "dec-L1",net.get_shape() print "========================" net = tflearn.reshape(net, (-1, 1, 1, self.hidden_dim)) net = tflearn.conv_2d(net, 32, 3, name='DecConv1') net = tflearn.batch_normalization(net, name='DecBN2') net = tflearn.elu(net) print "========================" print "dec-L2",net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, 16, 3, [1, self.hidden_dim], strides=2, padding='same', name='DecConvT1') net = tflearn.batch_normalization(net, name='DecBN3') net = tflearn.elu(net) print "========================" print "dec-L3",net.get_shape() print "========================" net = tflearn.conv_2d(net, 16, 3, name='DecConv2') net = tflearn.batch_normalization(net, name='DecBN4') net = tflearn.elu(net) print "========================" print "dec-L4",net.get_shape() print "========================" net = tflearn.conv_2d_transpose(net, 1, 3, [1, self.hidden_dim], strides=2, padding='same', activation='sigmoid', name='DecConvT2') decode_layer = net print "========================" print "output layer",net.get_shape() print "========================" return [net,decode_layer]