Example #1
0
 def do_training(self, epochs=100, test_interval=10, show_interval=50):
     errors = []
     if test_interval: self.avg_vector_distances = []
     self.current_session = sess = TFT.gen_initialized_session()
     step = 0
     for i in range(epochs):
         error = 0
         grabvars = [self.error]
         for c in self.cases:
             feeder = {self.input: [c[0]], self.target: [c[1]]}
             _, grabvals, _ = self.run_one_step([self.trainer],
                                                grabvars,
                                                step=step,
                                                show_interval=show_interval,
                                                session=sess,
                                                feed_dict=feeder)
             error += grabvals[0]
             step += 1
         errors.append(error)
         if (test_interval and i % test_interval == 0):
             self.avg_vector_distances.append(
                 calc_avg_vect_dist(self.do_testing(sess, scatter=False)))
     PLT.figure()
     TFT.simple_plot(errors, xtitle="Epoch", ytitle="Error", title="")
     if test_interval:
         PLT.figure()
         TFT.simple_plot(self.avg_vector_distances,
                         xtitle='Epoch',
                         ytitle='Avg Hidden-Node Vector Distance',
                         title='')
Example #2
0
 def training_session(self,
                      epochs,
                      sess=None,
                      dir="probeview",
                      continued=False):
     self.roundup_probes()
     session = sess if sess else TFT.gen_initialized_session(dir=dir)
     self.current_session = session
     self.do_training(session,
                      self.caseman.get_training_cases(),
                      epochs,
                      continued=continued)
Example #3
0
def quickrun4(operators,
              grabbed_vars=None,
              dir='probeview',
              session=None,
              feed_dict=None,
              step=1,
              show_interval=1):
    sess = session if session else TFT.gen_initialized_session(dir=dir)

    results = sess.run([operators, grabbed_vars], feed_dict=feed_dict)
    if (show_interval and step % show_interval) == 0:
        TFT.show_results(results[1], grabbed_vars, dir)
    return results[0], results[1], sess
Example #4
0
 def run_one_step(self,
                  operators,
                  grabbed_vars=None,
                  probed_vars=None,
                  dir='probeview',
                  session=None,
                  feed_dict=None,
                  step=1,
                  show_interval=1):
     sess = session if session else TFT.gen_initialized_session(dir=dir)
     if probed_vars is not None:
         results = sess.run([operators, grabbed_vars, probed_vars],
                            feed_dict=feed_dict)
         sess.probe_stream.add_summary(results[2], global_step=step)
     else:
         results = sess.run([operators, grabbed_vars], feed_dict=feed_dict)
     if show_interval and (step % show_interval == 0):
         self.display_grabvars(results[1], grabbed_vars, step=step)
     return results[0], results[1], sess
Example #5
0
def tfex8(size=5, steps=50, tvect=None, learning_rate=0.5, showint=10):
    target = tvect if tvect else np.ones((1, size))
    w = tf.Variable(np.random.uniform(-.1, .1, size=(size, size)),
                    name='weights')  # weights applied to x.
    b = tf.Variable(np.zeros((1, size)), name='bias')  # bias terms
    x = tf.placeholder(tf.float64, shape=(1, size), name='input')
    y = tf.sigmoid(
        tf.matmul(x, w) + b, name='out-sigmoid'
    )  # Gather all weighted inputs, then apply activation function
    error = tf.reduce_mean(tf.square(target - y))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_operator = optimizer.minimize(error)
    feeder = {x: np.random.uniform(-1, 1, size=(1, size))}
    sess = TFT.gen_initialized_session()
    for step in range(steps):
        quickrun4([training_operator], [w, b, y],
                  session=sess,
                  feed_dict=feeder,
                  step=step,
                  show_interval=showint)
    TFT.close_session(sess)