def test_spectrogram_db_magnituds_should_be_in_proper_range(): frame_size = 4096 hop_size = 4096 audio_file = os.path.join(DATA_DIR, 'she_brings_to_me.wav') signal_frames = SignalFrames(audio_file, frame_size, hop_size, mono_mix=True) w = create_window(frame_size) X = stft_spectrogram(signal_frames.frames, w, magnitudes='power_db') assert np.all(X >= -120), 'min value: %f should be >= -120' % X.min() assert np.all(X <= 0), 'max value: %f should be <= 0' % X.max()
def prepare_chomagram_and_labels(album, song_title, block_size, hop_size, bin_range, bin_division): song = 'The_Beatles/' + album + '/' + song_title data_dir = '../data/beatles' audio_file = data_dir + '/audio-cd/' + song + '.wav' chord_file = data_dir + '/chordlab/' + song + '.lab.pcs.tsv' audio_file, chord_file # ## Load audio print('loading audio:', audio_file) x, fs = load_wav(audio_file) print('sampling rate:', fs, 'Hz') print('number of samples:', len(x)) print('duration in audio:', len(x) / fs, 'sec') # ## Load chords print('loading chords:', chord_file) chords = pd.read_csv(chord_file, sep='\t') print('shape:', chords.shape) print('duration in chords:', chords['end'].iloc[-1]) pcs_cols = [ 'C', 'Db', 'D', 'Eb', 'E', 'F', 'Gb', 'G', 'Ab', 'A', 'Bb', 'B' ] label_cols = ['label', 'root', 'bass'] + pcs_cols # ## Split audio to blocks x_blocks, x_times = split_to_blocks(x, block_size, hop_size, fs) print('blocks shape:', x_blocks.shape) print('number of blocks:', len(x_blocks)) # start times for each block print('last block starts at:', x_times[-1], 'sec') # ## Mapping of chords to blocks def chords_to_blocks(chords, block_center_times): chord_ix = 0 for t in block_center_times: yield chords.iloc[i][pcs_cols] def time_to_samples(time): return np.round(time * fs) chords['start_sample'] = time_to_samples(chords['start']) chords['end_sample'] = time_to_samples(chords['end']) df_blocks = pd.DataFrame( {'start': time_to_samples(x_times).astype(np.int64)}) df_blocks['end'] = df_blocks['start'] + block_size label_dict = chords[label_cols].drop_duplicates().set_index('label') df_labels = chords[['start_sample', 'end_sample', 'label']].copy() df_labels.rename(columns={ 'start_sample': 'start', 'end_sample': 'end' }, inplace=True) df_labelled_blocks = block_labels(df_blocks, df_labels) df_block_pcs = df_labelled_blocks[['label']].join( label_dict, on='label')[['label'] + pcs_cols] assert len(df_block_pcs) == len(df_blocks) block_labels_file = '{}/chord-pcs/{}_{}/{}.pcs'.format( data_dir, block_size, hop_size, song) print('block labels file:', block_labels_file) os.makedirs(os.path.dirname(block_labels_file), exist_ok=True) df_block_pcs.to_csv(block_labels_file, sep='\t', index=False) # ## Chromagram features w = create_window(block_size) X_chromagram = chromagram(x_blocks, w, fs, to_log=True, bin_range=bin_range, bin_division=bin_division) chromagram_file = '{}/chromagram/block={}_hop={}_bins={},{}_div={}/{}.npz'.format( data_dir, block_size, hop_size, bin_range[0], bin_range[1], bin_division, song) print('chomagram file:', chromagram_file) os.makedirs(os.path.dirname(chromagram_file), exist_ok=True) np.savez_compressed(chromagram_file, X=X_chromagram, times=x_times)
# features = data['X'] # times = data['times'] ### Chord labels # df_labels = pd.read_csv(labels_file, sep='\t') # labels_pcs = df_labels[df_labels.columns[1:]].as_matrix() block_size = 4096 hop_size = 2048 print('loading audio:', audio_file) x, fs = load_wav(audio_file) print('splitting audio to blocks') x_blocks, times = split_to_blocks(x, block_size, hop_size) w = create_window(block_size) print('computing chromagram') X_chromagram = chromagram(x_blocks, w, fs, to_log=True) features = X_chromagram ## Data preprocessing ### Features print('scaling the input features') # scaler = MinMaxScaler() # X = scaler.fit_transform(features).astype('float32') # TODO: there's a bug: should be + 120 on both places!!! X = (features.astype('float32') - 120) / (features.shape[1] - 120) # reshape for 1D convolution
# features = data['X'] # times = data['times'] ### Chord labels # df_labels = pd.read_csv(labels_file, sep='\t') # labels_pcs = df_labels[df_labels.columns[1:]].as_matrix() block_size = 4096 hop_size = 2048 print('loading audio:', audio_file) print('splitting audio to blocks') signal_frames = SignalFrames(audio_file, frame_size=block_size, hop_size=hop_size) x_blocks, x_times, fs = signal_frames.frames, signal_frames.start_times, signal_frames.sample_rate w = create_window(block_size) print('computing chromagram') X_chromagram = chromagram(x_blocks, w, fs, to_log=True) features = X_chromagram ## Data preprocessing ### Features print('scaling the input features') # scaler = MinMaxScaler() # X = scaler.fit_transform(features).astype('float32') # TODO: there's a bug: should be + 120 on both places!!! X = (features.astype('float32') - 120) / (features.shape[1] - 120) # reshape for 1D convolution
def assert_ok(size): w = create_window(size) assert np.allclose(energy(w), len(w)) assert np.allclose(mean_power(w), 1.0)