global args
args = parse_args()

interp_list = [cv.INTER_NEAREST, cv.INTER_LINEAR, cv.INTER_CUBIC, cv.INTER_LANCZOS4]

def return_raw_image(dataset):
    dataset_raw = []
    for image_features in dataset:
        image_raw = image_features['image'].numpy()
        image = tf.image.decode_jpeg(image_raw)
        dataset_raw.append(image)
        
    return dataset_raw

fg_dataset = tfrecord_creator.read("fg", "./data/tfrecord/")
bg_dataset = tfrecord_creator.read("bg", "./data/tfrecord/")
a_dataset  = tfrecord_creator.read("a",  "./data/tfrecord/")
fg_dataset = list(fg_dataset)
bg_dataset = list(bg_dataset)
a_dataset  = list(a_dataset)
# fg_raw = return_raw_image(fg_dataset)
# bg_raw = return_raw_image(bg_dataset)
# a_raw  = return_raw_image(a_dataset)

def get_raw(type_of_dataset, count):
    if type_of_dataset == 'fg':
        temp = fg_dataset[count]['image']
        channels=3
    elif type_of_dataset == 'bg':
        temp = bg_dataset[count]['image']
Example #2
0
}


def return_raw_image(dataset):
    dataset_raw = []
    for image_features in dataset:
        image_raw = image_features['image'].numpy()
        image = tf.image.decode_jpeg(image_raw)
        dataset_raw.append(image)

    return dataset_raw


# bg_dataset = tfrecord_creator.read("bg", "./data/tfrecord/")
# bg_dataset = tfrecord_creator.read("bg", "../data/bg/")
bg_dataset = tfrecord_creator.read("bg", "/content/bg/")
bg_dataset = list(bg_dataset)
print("___________________")
print(len(bg_dataset))
print("___________________")


def get_raw(type_of_dataset, count):
    if type_of_dataset == 'fg':
        temp = fg_dataset[count]['image']
        channels = 3
    elif type_of_dataset == 'bg':
        temp = bg_dataset[count]['image']
        channels = 3
    else:
        temp = a_dataset[count]['image']