Example #1
0
def train(loss, input_x, x_data, max_epoch, batch_size, valid_portion):
    train_x, valid_x = split_numpy_array(x_data, portion=valid_portion)
    train_flow = DataFlow.arrays([train_x],
                                 batch_size=batch_size,
                                 shuffle=True,
                                 skip_incomplete=True)
    valid_flow = DataFlow.arrays([valid_x], batch_size=batch_size)

    # derive the optimizer
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(0.001, 0.99995)
    params = tf.trainable_variables()
    optimizer = tf.train.AdamOptimizer(learning_rate)
    train_op = optimizer.minimize(loss, var_list=params)

    # run the training loop
    with TrainLoop(params, max_epoch=max_epoch, early_stopping=True) as loop:
        trainer = LossTrainer(loop, loss, train_op, [input_x], train_flow)
        trainer.anneal_after_steps(learning_rate_var, freq=1)
        trainer.validate_after_epochs(Validator(loop, loss, [input_x],
                                                valid_flow),
                                      freq=1)
        trainer.after_epochs.add_hook(
            lambda: trainer.loop.collect_metrics(lr=learning_rate_var), freq=1)
        trainer.log_after_epochs(freq=1)
        trainer.run(feed_dict={learning_rate: learning_rate_var})
    def test_auto_init(self):
        epoch_counter = [0]

        seq_flow = DataFlow.seq(0, 10, batch_size=2)
        map_flow = seq_flow.map(lambda x: (x + epoch_counter[0] * 10, ))

        def make_iterator():
            epoch_counter[0] += 1
            return map_flow

        it_flow = DataFlow.iterator_factory(make_iterator)
        flow = it_flow.threaded(3)

        batches = [b[0] for b in flow]
        np.testing.assert_array_equal(
            [[10, 11], [12, 13], [14, 15], [16, 17], [18, 19]], batches)

        batches = [b[0] for b in flow]
        np.testing.assert_array_equal(
            [[20, 21], [22, 23], [24, 25], [26, 27], [28, 29]], batches)

        flow.close()
        batches = [b[0] for b in flow]
        np.testing.assert_array_equal(
            [[40, 41], [42, 43], [44, 45], [46, 47], [48, 49]], batches)

        flow.close()
Example #3
0
    def test_iterator_factory(self):
        x_flow = DataFlow.arrays([np.arange(5)], batch_size=3)
        y_flow = DataFlow.arrays([np.arange(5, 10)], batch_size=3)
        flow = DataFlow.iterator_factory(
            lambda: ((x, y) for (x, ), (y, ) in zip(x_flow, y_flow)))

        b = list(flow)
        self.assertEquals(2, len(b))
        self.assertEquals(2, len(b[0]))
        np.testing.assert_array_equal([0, 1, 2], b[0][0])
        np.testing.assert_array_equal([5, 6, 7], b[0][1])
        np.testing.assert_array_equal([3, 4], b[1][0])
        np.testing.assert_array_equal([8, 9], b[1][1])
Example #4
0
def _create_sampled_dataflow(arrays, sampler, sample_now, **kwargs):
    if sample_now:
        arrays = sampler(*arrays)
    df = DataFlow.arrays(arrays, **kwargs)
    if not sample_now:
        df = df.map(sampler)
    return df
Example #5
0
 def test_select(self):
     x = np.arange(5)
     y = np.arange(5, 10)
     z = np.arange(10, 15)
     flow = DataFlow.arrays([x, y, z], batch_size=5).select([0, 2, 0])
     self.assertEquals(1, len(list(flow)))
     for b in flow:
         np.testing.assert_equal([x, z, x], b)
Example #6
0
 def test_errors(self):
     source = DataFlow.arrays([np.arange(5), np.arange(5, 10)],
                              batch_size=4)
     df = source.map(lambda x, y: x + y)
     with pytest.raises(TypeError,
                        match='The output of the ``mapper`` is expected to '
                        'be a tuple or a list, but got a'):
         _ = list(df)
Example #7
0
    def test_run(self):
        with self.test_session() as session:
            df = DataFlow.arrays([np.arange(6, dtype=np.float32)],
                                 batch_size=4)

            def log_message(m):
                logged_messages.append(m)

            logged_messages = []

            # test default loss weight and merged feed dict
            with TrainLoop([], max_epoch=2) as loop:
                t = BaseTrainer(loop)
                t._run_step = Mock(return_value=None)
                t._iter_steps = Mock(wraps=lambda: loop.iter_steps(df))
                t.before_epochs.add_hook(
                    functools.partial(log_message, 'before_epoch'))
                t.before_steps.add_hook(
                    functools.partial(log_message, 'before_step'))
                t.after_steps.add_hook(
                    functools.partial(log_message, 'after_step'))
                t.after_epochs.add_hook(
                    functools.partial(log_message, 'after_epoch'))

                t.run()
                self.assertEquals(4, len(t._run_step.call_args_list))
                for i, call_args in enumerate(t._run_step.call_args_list[:-2]):
                    call_session, call_payload = call_args[0]
                    self.assertIs(session, call_session)
                    self.assertEquals(i + 1, call_payload[0])
                    self.assertIsInstance(call_payload[1], tuple)
                    self.assertEquals(1, len(call_payload[1]))
                    np.testing.assert_equal(
                        np.arange(6, dtype=np.float32)[i * 4:(i + 1) * 4],
                        call_payload[1][0])

                self.assertEquals([
                    'before_epoch', 'before_step', 'after_step', 'before_step',
                    'after_step', 'after_epoch'
                ] * 2, logged_messages)

            # test re-entrant error
            with TrainLoop([], max_epoch=1) as loop:
                t = BaseTrainer(loop)
                t._run_step = Mock(return_value=None)
                t._iter_steps = Mock(wraps=lambda: loop.iter_steps(df))

                def reentrant_error():
                    with pytest.raises(RuntimeError,
                                       match=r'`run\(\)` is not re-entrant'):
                        t.run()

                reentrant_error = Mock(wraps=reentrant_error)
                t.after_steps.add_hook(reentrant_error)
                t.run()
                self.assertTrue(reentrant_error.called)
Example #8
0
 def train_classifier(loop):
     df = DataFlow.arrays([x_train], batch_size=config.batch_size). \
         map(input_x_sampler)
     with loop.timeit('cls_train_time'):
         [c_pred] = collect_outputs(outputs=[y_given_x],
                                    inputs=[input_x],
                                    data_flow=df,
                                    feed_dict={is_training: False})
         c_classifier.fit(c_pred, y_train)
         print(c_classifier.describe())
Example #9
0
    def test_run(self):
        with self.test_session() as session:
            df = DataFlow.arrays([np.arange(6, dtype=np.float32)],
                                 batch_size=4)
            ph = tf.placeholder(tf.float32, shape=[None])
            ph2 = tf.placeholder(tf.float32, shape=[])
            ph3 = tf.placeholder(tf.float32, shape=[])

            # test default loss weight and merged feed dict
            with TrainLoop([], max_epoch=1) as loop:
                v = Evaluator(loop,
                              tf.reduce_mean(ph), [ph],
                              df,
                              feed_dict={ph2: 34})
                v._run_batch = Mock(wraps=v._run_batch)

                for epoch in loop.iter_epochs():
                    v.run({ph3: 56})
                    np.testing.assert_almost_equal(
                        2.5, loop._epoch_metrics._metrics['valid_loss'].mean)
                    np.testing.assert_almost_equal(
                        2.5, v.last_metrics_dict['valid_loss'])
                    self.assertIn('eval_time', loop._epoch_metrics._metrics)

                self.assertEquals(2, len(v._run_batch.call_args_list))
                for i, call_args in enumerate(v._run_batch.call_args_list):
                    call_session, call_feed_dict = call_args[0]
                    self.assertIs(session, call_session)
                    np.testing.assert_equal(
                        np.arange(6, dtype=np.float32)[i * 4:(i + 1) * 4],
                        call_feed_dict[ph])
                    self.assertEquals(34, call_feed_dict[ph2])
                    self.assertEquals(56, call_feed_dict[ph3])

            # test None loss weight and None time metric and override feed dict
            with TrainLoop([], max_epoch=1) as loop:
                v = Evaluator(loop, {'valid_loss_x': tf.reduce_mean(ph)}, [ph],
                              df,
                              feed_dict={ph2: 34},
                              batch_weight_func=None,
                              time_metric_name=None)
                v._run_batch = Mock(wraps=v._run_batch)

                for epoch in loop.iter_epochs():
                    v.run({ph2: 56})
                    np.testing.assert_almost_equal(
                        3.0, loop._epoch_metrics._metrics['valid_loss_x'].mean)
                    np.testing.assert_almost_equal(
                        3.0, v.last_metrics_dict['valid_loss_x'])
                    self.assertNotIn('eval_time', loop._epoch_metrics._metrics)

                for i, call_args in enumerate(v._run_batch.call_args_list):
                    call_session, call_feed_dict = call_args[0]
                    self.assertEquals(56, call_feed_dict[ph2])
                    self.assertNotIn(ph3, call_feed_dict)
Example #10
0
 def test_arrays(self):
     arrays = [np.arange(5), np.arange(10).reshape([5, 2])]
     df = DataFlow.arrays(arrays, 4, shuffle=False, skip_incomplete=False)
     self.assertIsInstance(df, ArrayFlow)
     for i, arr in enumerate(arrays):
         self.assertIs(arr, df.the_arrays[i])
     self.assertEquals(2, df.array_count)
     self.assertEquals(5, df.data_length)
     self.assertEquals(((), (2, )), df.data_shapes)
     self.assertFalse(df.is_shuffled)
     self.assertFalse(df.skip_incomplete)
Example #11
0
    def test_map_to_tuple(self):
        source = DataFlow.arrays([np.arange(5), np.arange(5, 10)],
                                 batch_size=4)
        df = source.map(lambda x, y: (x + y, ))
        self.assertIs(df.source, source)

        b = list(df)
        self.assertEquals(2, len(b))
        self.assertEquals(1, len(b[0]))
        np.testing.assert_array_equal([5, 7, 9, 11], b[0][0])
        np.testing.assert_array_equal([13], b[1][0])
Example #12
0
    def test_get_arrays(self):
        with pytest.raises(ValueError,
                           match='empty, cannot convert to arrays'):
            _ = DataFlow.arrays([np.arange(0)], batch_size=5).get_arrays()

        # test one batch
        df = DataFlow.arrays([np.arange(5), np.arange(5, 10)], batch_size=6)
        arrays = df.get_arrays()
        np.testing.assert_equal(np.arange(5), arrays[0])
        np.testing.assert_equal(np.arange(5, 10), arrays[1])

        # test two batches
        df = DataFlow.arrays([np.arange(10), np.arange(10, 20)], batch_size=6)
        arrays = df.get_arrays()
        np.testing.assert_equal(np.arange(10), arrays[0])
        np.testing.assert_equal(np.arange(10, 20), arrays[1])

        # test to_arrays_flow
        df2 = df.to_arrays_flow(batch_size=6)
        self.assertIsInstance(df2, ArrayFlow)
Example #13
0
    def test_implicit_iterator(self):
        df = DataFlow.arrays([np.arange(3)], batch_size=2)
        self.assertIsNone(df.current_batch)

        np.testing.assert_equal([[0, 1]], df.next_batch())
        np.testing.assert_equal([[0, 1]], df.current_batch)
        np.testing.assert_equal([[2]], df.next_batch())
        np.testing.assert_equal([[2]], df.current_batch)
        with pytest.raises(StopIteration):
            _ = df.next_batch()
        self.assertIsNone(df.current_batch)

        np.testing.assert_equal([[0, 1]], df.next_batch())
        np.testing.assert_equal([[0, 1]], df.current_batch)
Example #14
0
 def test_seq(self):
     df = DataFlow.seq(1,
                       9,
                       2,
                       batch_size=3,
                       shuffle=False,
                       skip_incomplete=False,
                       dtype=np.int64)
     self.assertIsInstance(df, SeqFlow)
     self.assertEquals(1, df.array_count)
     self.assertEquals(4, df.data_length)
     self.assertEquals(((), ), df.data_shapes)
     self.assertEquals(3, df.batch_size)
     self.assertFalse(df.is_shuffled)
     self.assertFalse(df.skip_incomplete)
     self.assertEquals(1, df.start)
     self.assertEquals(9, df.stop)
     self.assertEquals(2, df.step)
Example #15
0
    def test_run(self):
        ph = tf.placeholder(tf.int32, [5])
        var = tf.get_variable('var',
                              shape=[5],
                              dtype=tf.int32,
                              initializer=tf.zeros_initializer())
        train_op = tf.assign(var, ph)
        df = DataFlow.arrays([np.arange(10, 15, dtype=np.int32)], batch_size=5)
        with self.test_session() as session, \
                TrainLoop([var], max_epoch=1, early_stopping=False) as loop:
            loop.collect_metrics = Mock(wraps=loop.collect_metrics)
            t = Trainer(loop,
                        train_op, [ph],
                        df,
                        metrics={'loss_x': tf.reduce_sum(ph)})
            ensure_variables_initialized()
            t.run()

            self.assertEquals({'loss_x': 60},
                              loop.collect_metrics.call_args_list[0][0][0])
            np.testing.assert_equal([10, 11, 12, 13, 14], session.run(var))
Example #16
0
def main():
    # load mnist data
    (train_x, train_y), (test_x, test_y) = datasets.load_mnist()

    # the parameters of this experiment
    x_dim = train_x.shape[1]
    z_dim = 2
    max_epoch = 10
    batch_size = 256
    valid_portion = 0.2

    # construct the graph
    with tf.Graph().as_default(), tf.Session().as_default() as session:
        input_x = tf.placeholder(dtype=tf.float32,
                                 shape=(None, x_dim),
                                 name='input_x')
        x_binarized = tf.stop_gradient(sample_input_x(input_x))
        batch_size_tensor = tf.shape(input_x)[0]

        # derive the VAE
        z_shape = tf.stack([batch_size_tensor, z_dim])
        vae = VAE(p_z=Normal(mean=tf.zeros(z_shape), std=tf.ones(z_shape)),
                  p_x_given_z=Bernoulli,
                  q_z_given_x=Normal,
                  h_for_p_x=Sequential([
                      K.layers.Dense(100, activation=tf.nn.relu),
                      K.layers.Dense(100, activation=tf.nn.relu),
                      DictMapper(
                          {'logits': K.layers.Dense(x_dim, name='x_logits')})
                  ]),
                  h_for_q_z=Sequential([
                      tf.to_float,
                      K.layers.Dense(100, activation=tf.nn.relu),
                      K.layers.Dense(100, activation=tf.nn.relu),
                      DictMapper({
                          'mean':
                          K.layers.Dense(z_dim, name='z_mean'),
                          'logstd':
                          K.layers.Dense(z_dim, name='z_logstd'),
                      })
                  ]))

        # train the network
        train(vae.get_training_loss(x_binarized), input_x, train_x, max_epoch,
              batch_size, valid_portion)

        # plot the latent space
        q_net = vae.variational(x_binarized)
        z_posterior = q_net['z']
        z_predict = []

        for [batch_x] in DataFlow.arrays([test_x], batch_size=batch_size):
            z_predict.append(
                session.run(z_posterior, feed_dict={input_x: batch_x}))

        z_predict = np.concatenate(z_predict, axis=0)
        plt.figure(figsize=(8, 6))
        plt.scatter(z_predict[:, 0], z_predict[:, 1], c=test_y)
        plt.colorbar()
        plt.grid()
        plt.show()
def main():
    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_cifar10(dtype=np.float32, normalize=True)
    print(x_train.shape)

    # input placeholders
    input_x = tf.placeholder(
        dtype=tf.float32, shape=(None,) + x_train.shape[1:], name='input_x')
    input_y = tf.placeholder(
        dtype=tf.int32, shape=[None], name='input_y')
    is_training = tf.placeholder(
        dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU()

    # build the model
    grads = []
    losses = []
    y_list = []
    acc_list = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x, dev_input_y] in multi_gpu.data_parallel(
            batch_size, [input_x, input_y]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                _ = model(dev_input_x, is_training, channels_last=True)

            else:
                # derive the loss, output and accuracy
                dev_logits = model(
                    dev_input_x,
                    is_training=is_training,
                    channels_last=multi_gpu.channels_last(dev)
                )
                dev_softmax_loss = \
                    softmax_classification_loss(dev_logits, dev_input_y)
                dev_loss = dev_softmax_loss + regularization_loss()
                dev_y = softmax_classification_output(dev_logits)
                dev_acc = classification_accuracy(dev_y, dev_input_y)
                losses.append(dev_loss)
                y_list.append(dev_y)
                acc_list.append(dev_acc)

                # derive the optimizer
                params = tf.trainable_variables()
                grads.append(
                    optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, acc] = multi_gpu.average([losses, acc_list], batch_size)
    [y] = multi_gpu.concat([y_list])
    train_op = multi_gpu.apply_grads(
        grads=multi_gpu.average_grads(grads),
        optimizer=optimizer,
        control_inputs=tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    )

    # prepare for training and testing data
    train_flow = DataFlow.arrays(
        [x_train, y_train], config.batch_size, shuffle=True,
        skip_incomplete=True
    )
    test_flow = DataFlow.arrays([x_test, y_test], config.batch_size)

    with create_session().as_default():
        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       summary_commit_freqs={'loss': 10, 'acc': 10},
                       early_stopping=False) as loop:
            trainer = Trainer(
                loop, train_op, [input_x, input_y], train_flow,
                feed_dict={learning_rate: learning_rate_var, is_training: True},
                metrics={'loss': loss, 'acc': acc}
            )
            anneal_after(
                trainer, learning_rate_var, epochs=config.lr_anneal_epoch_freq,
                steps=config.lr_anneal_step_freq
            )
            evaluator = Evaluator(
                loop,
                metrics={'test_acc': acc},
                inputs=[input_x, input_y],
                data_flow=test_flow,
                feed_dict={is_training: False},
                time_metric_name='test_time'
            )
            evaluator.after_run.add_hook(
                lambda: results.commit(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=5)
            trainer.log_after_epochs(freq=1)
            trainer.run()

        # save test result
        results.commit_and_print(evaluator.last_metrics_dict)
Example #18
0
def main():
    logging.basicConfig(
        level='INFO',
        format='%(asctime)s [%(levelname)s] %(name)s: %(message)s')

    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_mnist(shape=[config.x_dim], dtype=np.float32, normalize=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, ) + x_train.shape[1:],
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(),
                                   dtype=tf.float32,
                                   name='learning_rate')
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    tau_p = tf.placeholder(shape=(), dtype=tf.float32, name='tau_p')
    tau_p_var = AnnealingDynamicValue(config.initial_tau_p,
                                      config.tau_p_anneal_factor,
                                      config.min_tau_p)
    tau_q = tf.placeholder(shape=(), dtype=tf.float32, name='tau_q')
    tau_q_var = AnnealingDynamicValue(config.initial_tau_q,
                                      config.tau_q_anneal_factor,
                                      config.min_tau_q)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    grads = []
    losses = []
    test_nlls = []
    y_given_x_list = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([q_net, p_net], is_training=is_training):
                    _ = q_net(dev_input_x).chain(p_net,
                                                 latent_names=['y', 'z'],
                                                 observed={'x': dev_input_x})

            else:
                with arg_scope([q_net, p_net], is_training=is_training):
                    # derive the loss and lower-bound for training
                    train_n_samples = (config.train_n_samples_for_concrete
                                       if config.use_concrete_distribution else
                                       config.train_n_samples)
                    train_q_net = q_net(dev_input_x,
                                        n_samples=train_n_samples,
                                        tau=tau_q)
                    train_chain = train_q_net.chain(
                        p_net,
                        latent_names=['y', 'z'],
                        latent_axis=0,
                        observed={'x': dev_input_x},
                        tau=tau_p)

                    if config.use_concrete_distribution:
                        if train_n_samples is None:
                            dev_vae_loss = tf.reduce_mean(
                                train_chain.vi.training.sgvb())
                        else:
                            dev_vae_loss = tf.reduce_mean(
                                train_chain.vi.training.iwae())
                    else:
                        if train_n_samples is None:
                            dev_baseline = reinforce_baseline_net(dev_input_x)
                            dev_vae_loss = tf.reduce_mean(
                                train_chain.vi.training.reinforce(
                                    baseline=dev_baseline))
                        else:
                            dev_vae_loss = tf.reduce_mean(
                                train_chain.vi.training.vimco())
                    dev_loss = dev_vae_loss + regularization_loss()
                    dev_loss = add_p_z_given_y_reg_loss(dev_loss)
                    losses.append(dev_loss)

                    # derive the nll and logits output for testing
                    test_q_net = q_net(dev_input_x,
                                       n_samples=config.test_n_samples)
                    test_chain = test_q_net.chain(p_net,
                                                  latent_names=['y', 'z'],
                                                  latent_axis=0,
                                                  observed={'x': dev_input_x})
                    dev_test_nll = -tf.reduce_mean(
                        test_chain.vi.evaluation.is_loglikelihood())
                    test_nlls.append(dev_test_nll)

                    # derive the classifier via q(y|x)
                    dev_q_y_given_x = tf.argmax(
                        test_q_net['y'].distribution.logits, axis=-1)
                    y_given_x_list.append(dev_q_y_given_x)

                    # derive the optimizer
                    params = tf.trainable_variables()
                    grads.append(
                        optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, test_nll] = \
        multi_gpu.average([losses, test_nlls], batch_size)
    [y_given_x] = multi_gpu.concat([y_given_x_list])

    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'):
        plot_p_net = p_net(
            observed={'y': tf.range(config.n_clusters, dtype=tf.int32)},
            n_z=10,
            is_training=is_training)
        x = tf.cast(255 * tf.sigmoid(plot_p_net['x'].distribution.logits),
                    dtype=tf.uint8)
        x_plots = tf.reshape(tf.transpose(x, [1, 0, 2]), [-1, 28, 28])

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename=results.prepare_parent(
                                       'plotting/{}.png'.format(loop.epoch)),
                                   grid_size=(config.n_clusters, 10))

    # derive the final un-supervised classifier
    c_classifier = ClusteringClassifier(config.n_clusters, 10)
    test_metrics = {}

    def train_classifier(loop):
        df = DataFlow.arrays([x_train], batch_size=config.batch_size). \
            map(input_x_sampler)
        with loop.timeit('cls_train_time'):
            [c_pred] = collect_outputs(outputs=[y_given_x],
                                       inputs=[input_x],
                                       data_flow=df,
                                       feed_dict={is_training: False})
            c_classifier.fit(c_pred, y_train)
            print(c_classifier.describe())

    def evaluate_classifier(loop):
        with loop.timeit('cls_test_time'):
            [c_pred] = collect_outputs(outputs=[y_given_x],
                                       inputs=[input_x],
                                       data_flow=test_flow,
                                       feed_dict={is_training: False})
            y_pred = c_classifier.predict(c_pred)
            cls_metrics = {'test_acc': accuracy_score(y_test, y_pred)}
            loop.collect_metrics(cls_metrics)
            test_metrics.update(cls_metrics)

    # prepare for training and testing data
    def input_x_sampler(x):
        return session.run([sampled_x], feed_dict={sample_input_x: x})

    with tf.device('/device:CPU:0'):
        sample_input_x = tf.placeholder(dtype=tf.float32,
                                        shape=(None, config.x_dim),
                                        name='sample_input_x')
        sampled_x = sample_from_probs(sample_input_x)

    train_flow = DataFlow.arrays([x_train],
                                 config.batch_size,
                                 shuffle=True,
                                 skip_incomplete=True).map(input_x_sampler)
    test_flow = DataFlow.arrays([x_test], config.test_batch_size). \
        map(input_x_sampler)

    with create_session().as_default() as session, \
            train_flow.threaded(5) as train_flow:
        # fix the testing flow, reducing the testing time
        test_flow = test_flow.to_arrays_flow(batch_size=config.test_batch_size)

        # train the network
        with TrainLoop(params,
                       var_groups=['p_net', 'q_net', 'gaussian_mixture_prior'],
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       summary_commit_freqs={'loss': 10},
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  tau_p: tau_p_var,
                                  tau_q: tau_q_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            anneal_after(trainer,
                         learning_rate_var,
                         epochs=config.lr_anneal_epoch_freq,
                         steps=config.lr_anneal_step_freq)
            anneal_after(trainer,
                         tau_p_var,
                         epochs=config.tau_p_anneal_epoch_freq,
                         steps=config.tau_p_anneal_step_freq)
            anneal_after(trainer,
                         tau_q_var,
                         epochs=config.tau_q_anneal_epoch_freq,
                         steps=config.tau_q_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={'test_nll': test_nll},
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.commit(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                train_classifier, loop),
                                          freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                evaluate_classifier, loop),
                                          freq=10)

            trainer.log_after_epochs(freq=1)
            trainer.run()

    # write the final results
    with codecs.open('cluster_classifier.txt', 'wb', 'utf-8') as f:
        f.write(c_classifier.describe())
    test_metrics.update(evaluator.last_metrics_dict)
    results.commit_and_print(test_metrics)
Example #19
0
    def test_counters(self):
        # test loop with configured `max_epoch`
        with TrainLoop([], max_epoch=2) as loop:
            epoch_counter = 0
            step_counter = 0
            for epoch in loop.iter_epochs():
                epoch_counter += 1
                self.assertEqual(epoch, epoch_counter)
                x_ans = 0
                for step, [x] in \
                        loop.iter_steps(DataFlow.arrays([np.arange(4)], 1)):
                    self.assertEqual(step, loop.step)
                    self.assertEqual(epoch, loop.epoch)
                    self.assertEqual(x, x_ans)
                    x_ans += 1
                    step_counter += 1
                    self.assertEqual(step, step_counter)
                self.assertEqual(step_counter, loop.step)
                self.assertEqual(epoch, loop.epoch)
            self.assertEqual(epoch_counter, 2)
            self.assertEqual(step_counter, 8)

        # test loop with configured `max_step`
        with TrainLoop([], max_step=10) as loop:
            epoch_counter = 0
            step_counter = 0
            for epoch in loop.iter_epochs():
                epoch_counter += 1
                self.assertEqual(epoch, epoch_counter)
                for step in loop.iter_steps():
                    step_counter += 1
                    self.assertEqual(step, step_counter)
            self.assertEqual(epoch_counter, 1)
            self.assertEqual(step_counter, 10)

        # test loop with configured `max_step` with payload
        with TrainLoop([], max_step=10) as loop:
            epoch_counter = 0
            step_counter = 0
            for epoch in loop.iter_epochs():
                epoch_counter += 1
                self.assertEqual(epoch, epoch_counter)
                x_ans = 0
                for step, x in loop.iter_steps(np.arange(4)):
                    self.assertEqual(x, x_ans)
                    x_ans += 1
                    step_counter += 1
                    self.assertEqual(step, step_counter)
            self.assertEqual(epoch_counter, 3)
            self.assertEqual(step_counter, 10)

        # test loop with configured `max_step` and `max_epoch`,
        # while `max_epoch` finishes first
        with TrainLoop([], max_step=10, max_epoch=2) as loop:
            epoch_counter = 0
            step_counter = 0
            for epoch in loop.iter_epochs():
                epoch_counter += 1
                self.assertEqual(epoch, epoch_counter)
                for step, _ in loop.iter_steps(np.arange(4)):
                    step_counter += 1
                    self.assertEqual(step, step_counter)
            self.assertEqual(epoch_counter, 2)
            self.assertEqual(step_counter, 8)

        # test loop with configured `max_step` and `max_epoch`,
        # while `max_step` finishes first
        with TrainLoop([], max_step=10, max_epoch=3) as loop:
            epoch_counter = 0
            step_counter = 0
            for epoch in loop.iter_epochs():
                epoch_counter += 1
                self.assertEqual(epoch, epoch_counter)
                for step, _ in loop.iter_steps(np.arange(4)):
                    step_counter += 1
                    self.assertEqual(step, step_counter)
            self.assertEqual(epoch_counter, 3)
            self.assertEqual(step_counter, 10)
Example #20
0
def main(config, result_dir):
    # print the config
    print_with_title('Configurations', config.format_config(), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(result_dir)
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.float32,
                             shape=(None, config.x_dim),
                             name='input_x')
    input_y = tf.placeholder(dtype=tf.int32, shape=[None], name='input_y')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)

    # derive the loss, output and accuracy
    logits = model(input_x, is_training=is_training)
    softmax_loss = softmax_classification_loss(logits, input_y)
    loss = softmax_loss + regularization_loss()
    y = softmax_classification_output(logits)
    acc = classification_accuracy(y, input_y)

    # derive the optimizer
    optimizer = tf.train.AdamOptimizer(learning_rate)
    params = tf.trainable_variables()
    grads = optimizer.compute_gradients(loss, var_list=params)
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        train_op = optimizer.apply_gradients(grads)

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = \
        load_cifar10(x_shape=(config.x_dim,), normalize_x=True)
    train_flow = DataFlow.arrays([x_train, y_train],
                                 config.batch_size,
                                 shuffle=True,
                                 skip_incomplete=True)
    test_flow = DataFlow.arrays([x_test, y_test], config.test_batch_size)

    with create_session().as_default():
        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       max_step=config.max_step,
                       summary_dir=(results.system_path('train_summary')
                                    if config.write_summary else None),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x, input_y],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={
                                  'loss': loss,
                                  'acc': acc
                              })
            trainer.anneal_after(learning_rate_var,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={'test_acc': acc},
                                  inputs=[input_x, input_y],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=5)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()
Example #21
0
def main():
    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_mnist(shape=[config.x_dim], dtype=np.float32, normalize=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, ) + x_train.shape[1:],
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    vae = VAE(
        p_z=Bernoulli(tf.zeros([1, config.z_dim])),
        p_x_given_z=Bernoulli,
        q_z_given_x=Bernoulli,
        h_for_p_x=functools.partial(h_for_p_x, is_training=is_training),
        h_for_q_z=functools.partial(h_for_q_z, is_training=is_training),
    )

    grads = []
    losses = []
    lower_bounds = []
    test_nlls = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([h_for_q_z, h_for_p_x]):
                    _ = vae.chain(dev_input_x)

            else:
                # derive the loss and lower-bound for training
                train_chain = vae.chain(dev_input_x)
                dev_baseline = baseline_net(dev_input_x)
                dev_cost, dev_baseline_cost = \
                    train_chain.vi.training.reinforce(baseline=dev_baseline)
                dev_loss = regularization_loss() + \
                    tf.reduce_mean(dev_cost + dev_baseline_cost)
                dev_lower_bound = \
                    tf.reduce_mean(train_chain.vi.lower_bound.elbo())
                losses.append(dev_loss)
                lower_bounds.append(dev_lower_bound)

                # derive the nll and logits output for testing
                test_chain = vae.chain(dev_input_x, n_z=config.test_n_z)
                dev_test_nll = -tf.reduce_mean(
                    test_chain.vi.evaluation.is_loglikelihood())
                test_nlls.append(dev_test_nll)

                # derive the optimizer
                params = tf.trainable_variables()
                grads.append(
                    optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, lower_bound, test_nll] = \
        multi_gpu.average([losses, lower_bounds, test_nlls], batch_size)
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'), \
            arg_scope([h_for_q_z, h_for_p_x],
                      channels_last=multi_gpu.channels_last(work_dev)):
        x_plots = tf.reshape(
            tf.cast(255 *
                    tf.sigmoid(vae.model(n_z=100)['x'].distribution.logits),
                    dtype=tf.uint8), [-1, 28, 28])

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            session = get_default_session_or_error()
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename=results.prepare_parent(
                                       'plotting/{}.png'.format(loop.epoch)),
                                   grid_size=(10, 10))

    # prepare for training and testing data
    def input_x_sampler(x):
        sess = get_default_session_or_error()
        return sess.run([sampled_x], feed_dict={sample_input_x: x})

    with tf.device('/device:CPU:0'):
        sample_input_x = tf.placeholder(dtype=tf.float32,
                                        shape=(None, config.x_dim),
                                        name='sample_input_x')
        sampled_x = sample_from_probs(sample_input_x)

    train_flow = DataFlow.arrays([x_train],
                                 config.batch_size,
                                 shuffle=True,
                                 skip_incomplete=True).map(input_x_sampler)
    test_flow = DataFlow.arrays([x_test], config.test_batch_size). \
        map(input_x_sampler)

    with create_session().as_default():
        # fix the testing flow, reducing the testing time
        test_flow = test_flow.to_arrays_flow(batch_size=config.test_batch_size)

        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            anneal_after(trainer,
                         learning_rate_var,
                         epochs=config.lr_anneal_epoch_freq,
                         steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': lower_bound
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # write the final test_nll and test_lb
    results.commit(evaluator.last_metrics_dict)
Example #22
0
    def iter_steps(self, data_generator=None):
        """
        Iterate through the steps.

        This method can only be called when there's no other step loop
        is being iterated, and an epoch loop is active.

        Args:
            data_generator: Optional iterable data to be yielded at every step.
                This is required if `max_step` is not configured, so as to
                prevent an infinite step loop.

        Yields:
            int or (int, any): The global step counter (starting from 1), or
                the tuple of ``(step counter, batch data)`` if `data_generator`
                is specified.
        """
        def loop_condition():
            return self._max_step is None or self._step < self._max_step

        self._require_entered()
        if not self._within_epoch:
            raise RuntimeError('Step loop must be opened within active epoch '
                               'loop')
        if self._within_step:
            raise RuntimeError('Another step loop has been opened')
        if self._max_step is None and data_generator is None:
            raise RuntimeError('`data_generator` is required when `max_step` '
                               'is not configured, so as to prevent an '
                               'unstoppable step loop')

        try:
            if data_generator is not None:
                if isinstance(data_generator, DataFlow):
                    data_flow = data_generator
                else:

                    def iter_factory():
                        if data_gen[0] is not None:
                            for batch in data_gen[0]:
                                yield batch
                        data_gen[0] = None  # force to use data_generator once

                    data_gen = [data_generator]
                    data_flow = DataFlow.iterator_factory(iter_factory)
                self._data_flow = data_flow

            while loop_condition():
                # prepare for the step data
                if self._data_flow is None:
                    yield_obj = self._step + 1
                else:
                    try:
                        step_data = self._data_flow.next_batch()
                    except StopIteration:
                        break
                    yield_obj = self._step + 1, step_data

                # yield this step
                self._step += 1
                self._within_step = True
                self._step_start_time = time.time()
                try:
                    yield yield_obj
                except StopIteration:  # pragma: no cover
                    # might be caused by call to ``data_flow.next_batch()``
                    break
                self._commit_step_stop_time()
        finally:
            self._within_step = False
            self._step_start_time = None
            self._data_flow = None
    def test_iterator(self):
        epoch_counter = [0]
        external_counter = [1]

        seq_flow = DataFlow.seq(0, 10, batch_size=2)
        map_flow = seq_flow.map(lambda x: (x + epoch_counter[0] * 10 +
                                           external_counter[0] * 100, ))

        def make_iterator():
            epoch_counter[0] += 1
            return map_flow

        it_flow = DataFlow.iterator_factory(make_iterator)
        with it_flow.threaded(prefetch=2) as flow:
            # the first epoch, expect 0 .. 10
            np.testing.assert_array_equal(
                [[110, 111], [112, 113], [114, 115], [116, 117], [118, 119]],
                [a[0] for a in flow])
            time.sleep(.1)
            external_counter[0] += 1

            # the second epoch, the epoch counter should affect more than
            # the external counter
            np.testing.assert_array_equal(
                # having `prefetch = 2` should affect 3 items, because
                # while the queue size is 2, there are 1 additional prefetched
                # item waiting to be enqueued
                [[120, 121], [122, 123], [124, 125], [226, 227], [228, 229]],
                [a[0] for a in flow])
            time.sleep(.1)
            external_counter[0] += 1

            # the third epoch, we shall carry out an incomplete epoch by break
            for a in flow:
                np.testing.assert_array_equal([230, 231], a[0])
                break
            time.sleep(.1)
            external_counter[0] += 1

            # verify that the epoch counter increases after break
            for i, (a, ) in enumerate(flow):
                # because the interruption is not well-predictable under
                # multi-threading context, we shall have a weaker verification
                # than the above
                self.assertTrue((340 + i * 2 == a[0]) or (440 + i * 2 == a[0]))
                self.assertTrue((341 + i * 2 == a[1]) or (441 + i * 2 == a[1]))
            time.sleep(.1)
            external_counter[0] += 1

            # carry out the fourth, incomplete epoch by error
            try:
                for a in flow:
                    np.testing.assert_array_equal([450, 451], a[0])
                    raise _MyError()
            except _MyError:
                pass
            time.sleep(.1)
            external_counter[0] += 1

            # verify that the epoch counter increases after error
            for i, (a, ) in enumerate(flow):
                self.assertTrue((560 + i * 2 == a[0]) or (660 + i * 2 == a[0]))
                self.assertTrue((561 + i * 2 == a[1]) or (661 + i * 2 == a[1]))
Example #24
0
def main():
    logging.basicConfig(
        level='INFO',
        format='%(asctime)s [%(levelname)s] %(name)s: %(message)s')

    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_mnist(shape=[config.x_dim], dtype=np.float32, normalize=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, ) + x_train.shape[1:],
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    grads = []
    losses = []
    lower_bounds = []
    test_nlls = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([p_net, q_net], is_training=is_training):
                    _ = q_net(dev_input_x).chain(p_net,
                                                 latent_names=['z'],
                                                 observed={'x': dev_input_x})

            else:
                with arg_scope([q_net, p_net], is_training=is_training):
                    # derive the loss and lower-bound for training
                    train_q_net = q_net(dev_input_x)
                    train_chain = train_q_net.chain(
                        p_net,
                        latent_names=['z'],
                        latent_axis=0,
                        observed={'x': dev_input_x})

                    dev_vae_loss = tf.reduce_mean(
                        train_chain.vi.training.sgvb())
                    dev_loss = dev_vae_loss + regularization_loss()
                    dev_lower_bound = -dev_vae_loss
                    losses.append(dev_loss)
                    lower_bounds.append(dev_lower_bound)

                    # derive the nll and logits output for testing
                    test_q_net = q_net(dev_input_x, n_z=config.test_n_z)
                    test_chain = test_q_net.chain(p_net,
                                                  latent_names=['z'],
                                                  latent_axis=0,
                                                  observed={'x': dev_input_x})
                    dev_test_nll = -tf.reduce_mean(
                        test_chain.vi.evaluation.is_loglikelihood())
                    test_nlls.append(dev_test_nll)

                    # derive the optimizer
                    params = tf.trainable_variables()
                    grads.append(
                        optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, lower_bound, test_nll] = \
        multi_gpu.average([losses, lower_bounds, test_nlls], batch_size)
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'):
        plot_p_net = p_net(n_z=100, is_training=is_training)
        x = tf.cast(255 * tf.sigmoid(plot_p_net['x'].distribution.logits),
                    dtype=tf.uint8)
        x_plots = tf.reshape(x, [-1, 28, 28])

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename=results.prepare_parent(
                                       'plotting/{}.png'.format(loop.epoch)),
                                   grid_size=(10, 10))

    # prepare for training and testing data
    def input_x_sampler(x):
        return session.run([sampled_x], feed_dict={sample_input_x: x})

    with tf.device('/device:CPU:0'):
        sample_input_x = tf.placeholder(dtype=tf.float32,
                                        shape=(None, config.x_dim),
                                        name='sample_input_x')
        sampled_x = sample_from_probs(sample_input_x)

    train_flow = DataFlow.arrays([x_train],
                                 config.batch_size,
                                 shuffle=True,
                                 skip_incomplete=True).map(input_x_sampler)
    test_flow = DataFlow.arrays([x_test], config.test_batch_size). \
        map(input_x_sampler)

    with create_session().as_default() as session, \
            train_flow.threaded(5) as train_flow:
        # fix the testing flow, reducing the testing time
        test_flow = test_flow.to_arrays_flow(batch_size=config.test_batch_size)

        # train the network
        with TrainLoop(params,
                       var_groups=['p_net', 'q_net', 'posterior_flow'],
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            anneal_after(trainer,
                         learning_rate_var,
                         epochs=config.lr_anneal_epoch_freq,
                         steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': lower_bound
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.commit(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # write the final test_nll and test_lb
    results.commit_and_print(evaluator.last_metrics_dict)
 def test_errors(self):
     with pytest.raises(ValueError,
                        match='`prefetch_num` must be at least 1'):
         _ = ThreadingFlow(DataFlow.arrays([np.arange(10)], batch_size=2),
                           prefetch=0)
Example #26
0
def main():
    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_mnist(shape=[784], dtype=np.float32, normalize=True)

    # input placeholders
    input_x = tf.placeholder(
        dtype=tf.float32, shape=(None,) + x_train.shape[1:], name='input_x')
    input_y = tf.placeholder(
        dtype=tf.int32, shape=[None], name='input_y')
    is_training = tf.placeholder(
        dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)

    # build the model
    optimizer = tf.train.AdamOptimizer(learning_rate)

    # derive the loss, output and accuracy
    logits = model(input_x, is_training=is_training)
    softmax_loss = softmax_classification_loss(logits, input_y)
    loss = softmax_loss + regularization_loss()
    y = softmax_classification_output(logits)
    acc = classification_accuracy(y, input_y)

    # derive the optimizer
    params = tf.trainable_variables()
    grads = optimizer.compute_gradients(loss, var_list=params)
    with tf.control_dependencies(
            tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        train_op = optimizer.apply_gradients(grads)

    # prepare for training and testing data
    train_flow = DataFlow.arrays(
        [x_train, y_train], config.batch_size, shuffle=True,
        skip_incomplete=True
    )
    test_flow = DataFlow.arrays([x_test, y_test], config.batch_size)

    with create_session().as_default():
        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       summary_commit_freqs={'loss': 10, 'acc': 10},
                       early_stopping=False) as loop:
            trainer = Trainer(
                loop, train_op, [input_x, input_y], train_flow,
                feed_dict={learning_rate: learning_rate_var, is_training: True},
                metrics={'loss': loss, 'acc': acc}
            )
            anneal_after(
                trainer, learning_rate_var, epochs=config.lr_anneal_epoch_freq,
                steps=config.lr_anneal_step_freq
            )
            evaluator = Evaluator(
                loop,
                metrics={'test_acc': acc},
                inputs=[input_x, input_y],
                data_flow=test_flow,
                feed_dict={is_training: False},
                time_metric_name='test_time'
            )
            trainer.evaluate_after_epochs(evaluator, freq=5)
            trainer.log_after_epochs(freq=1)
            trainer.run()

        # save test result
        results.commit(evaluator.last_metrics_dict)
 def test_threaded(self):
     flow = DataFlow.arrays([np.arange(10)], batch_size=2). \
         threaded(prefetch=3)
     self.assertIsInstance(flow, ThreadingFlow)
     self.assertEquals(3, flow.prefetch_num)