Example #1
0
 def train_classifier(loop):
     df = bernoulli_flow(x_train,
                         config.batch_size,
                         shuffle=False,
                         skip_incomplete=False)
     with loop.timeit('cls_train_time'):
         [c_pred] = collect_outputs(outputs=[q_y_given_x],
                                    inputs=[input_x],
                                    data_flow=df,
                                    feed_dict={is_training: False})
         c_classifier.fit(c_pred, y_train)
         print(c_classifier.describe())
Example #2
0
def main(config, result_dir):
    # print the config
    print_with_title('Configurations', config.format_config(), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(result_dir)
    results.make_dirs('plotting', exist_ok=True)
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, config.x_dim),
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    grads = []
    losses = []
    test_nlls = []
    test_lbs = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([p_net, q_net],
                               is_training=is_training,
                               channels_last=True):
                    _ = q_net(dev_input_x).chain(p_net,
                                                 latent_names=['z'],
                                                 observed={'x': dev_input_x})

            else:
                with arg_scope([p_net, q_net],
                               is_training=is_training,
                               channels_last=multi_gpu.channels_last(dev)):
                    # derive the loss and lower-bound for training
                    train_q_net = q_net(dev_input_x)
                    train_chain = train_q_net.chain(
                        p_net,
                        latent_names=['z'],
                        latent_axis=0,
                        observed={'x': dev_input_x})

                    dev_vae_loss = tf.reduce_mean(
                        train_chain.vi.training.sgvb())
                    dev_loss = dev_vae_loss + regularization_loss()
                    losses.append(dev_loss)

                    # derive the nll and logits output for testing
                    test_q_net = q_net(dev_input_x, n_z=config.test_n_z)
                    test_chain = test_q_net.chain(p_net,
                                                  latent_names=['z'],
                                                  latent_axis=0,
                                                  observed={'x': dev_input_x})
                    dev_test_nll = -tf.reduce_mean(
                        test_chain.vi.evaluation.is_loglikelihood())
                    dev_test_lb = tf.reduce_mean(
                        test_chain.vi.lower_bound.elbo())
                    test_nlls.append(dev_test_nll)
                    test_lbs.append(dev_test_lb)

                    # derive the optimizer
                    params = tf.trainable_variables()
                    grads.append(
                        optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, test_lb, test_nll] = \
        multi_gpu.average([losses, test_lbs, test_nlls], batch_size)
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'):
        plot_p_net = p_net(n_z=100,
                           is_training=is_training,
                           channels_last=multi_gpu.channels_last(work_dev))
        x_plots = tf.reshape(bernoulli_as_pixel(plot_p_net['x']), (-1, 28, 28))

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename='plotting/{}.png'.format(
                                       loop.epoch),
                                   grid_size=(10, 10),
                                   results=results)

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = load_mnist()
    train_flow = bernoulli_flow(x_train,
                                config.batch_size,
                                shuffle=True,
                                skip_incomplete=True)
    test_flow = bernoulli_flow(x_test, config.test_batch_size, sample_now=True)

    with create_session().as_default() as session, \
            train_flow.threaded(5) as train_flow:
        # train the network
        with TrainLoop(params,
                       var_groups=['q_net', 'p_net'],
                       max_epoch=config.max_epoch,
                       max_step=config.max_step,
                       summary_dir=(results.system_path('train_summary')
                                    if config.write_summary else None),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            trainer.anneal_after(learning_rate_var,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': test_lb
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()
Example #3
0
def main(config, result_dir):
    # print the config
    print_with_title('Configurations', config.format_config(), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(result_dir)
    results.make_dirs('plotting', exist_ok=True)
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, config.x_dim),
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(),
                                   dtype=tf.float32,
                                   name='learning_rate')
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)

    # build the model
    with arg_scope([q_net, p_net], is_training=is_training):
        # derive the loss and lower-bound for training
        train_q_net = q_net(input_x, n_samples=config.train_n_samples)
        train_chain = train_q_net.chain(p_net,
                                        latent_names=['y', 'z'],
                                        latent_axis=0,
                                        observed={'x': input_x})

        if config.train_n_samples is None:
            baseline = reinforce_baseline_net(input_x)
            vae_loss = tf.reduce_mean(
                train_chain.vi.training.reinforce(baseline=baseline))
        else:
            vae_loss = tf.reduce_mean(train_chain.vi.training.vimco())
        loss = vae_loss + regularization_loss()

        # derive the nll and logits output for testing
        test_q_net = q_net(input_x, n_samples=config.test_n_samples)
        test_chain = test_q_net.chain(p_net,
                                      latent_names=['y', 'z'],
                                      latent_axis=0,
                                      observed={'x': input_x})
        test_nll = -tf.reduce_mean(test_chain.vi.evaluation.is_loglikelihood())

        # derive the classifier via q(y|x)
        q_y_given_x = tf.argmax(test_q_net['y'].distribution.logits, axis=-1)

    # derive the optimizer
    optimizer = tf.train.AdamOptimizer(learning_rate)
    params = tf.trainable_variables()
    grads = optimizer.compute_gradients(loss, var_list=params)
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        train_op = optimizer.apply_gradients(grads)

    # derive the plotting function
    with tf.name_scope('plot_x'):
        plot_p_net = p_net(
            observed={'y': tf.range(config.n_clusters, dtype=tf.int32)},
            n_z=10,
            is_training=is_training)
        x_plots = tf.reshape(
            tf.transpose(bernoulli_as_pixel(plot_p_net['x']), (1, 0, 2)),
            (-1, 28, 28))

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename='plotting/{}.png'.format(
                                       loop.epoch),
                                   grid_size=(config.n_clusters, 10),
                                   results=results)

    # derive the final un-supervised classifier
    c_classifier = ClusteringClassifier(config.n_clusters, 10)

    def train_classifier(loop):
        df = bernoulli_flow(x_train,
                            config.batch_size,
                            shuffle=False,
                            skip_incomplete=False)
        with loop.timeit('cls_train_time'):
            [c_pred] = collect_outputs(outputs=[q_y_given_x],
                                       inputs=[input_x],
                                       data_flow=df,
                                       feed_dict={is_training: False})
            c_classifier.fit(c_pred, y_train)
            print(c_classifier.describe())

    def evaluate_classifier(loop):
        with loop.timeit('cls_test_time'):
            [c_pred] = collect_outputs(outputs=[q_y_given_x],
                                       inputs=[input_x],
                                       data_flow=test_flow,
                                       feed_dict={is_training: False})
            y_pred = c_classifier.predict(c_pred)
            cls_metrics = {'test_acc': accuracy_score(y_test, y_pred)}
            loop.collect_metrics(cls_metrics)
            results.update_metrics(cls_metrics)

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = load_mnist()
    train_flow = bernoulli_flow(x_train,
                                config.batch_size,
                                shuffle=True,
                                skip_incomplete=True)
    test_flow = bernoulli_flow(x_test, config.test_batch_size, sample_now=True)

    with create_session().as_default() as session, \
            train_flow.threaded(5) as train_flow:
        # train the network
        with TrainLoop(params,
                       var_groups=['p_net', 'q_net', 'gaussian_mixture_prior'],
                       max_epoch=config.max_epoch,
                       max_step=config.max_step,
                       summary_dir=(results.system_path('train_summary')
                                    if config.write_summary else None),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            trainer.anneal_after(learning_rate_var,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={'test_nll': test_nll},
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                train_classifier, loop),
                                          freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                evaluate_classifier, loop),
                                          freq=10)

            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    with codecs.open('cluster_classifier.txt', 'wb', 'utf-8') as f:
        f.write(c_classifier.describe())
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()
Example #4
0
def main(config, result_dir):
    # print the config
    print_with_title('Configurations', config.format_config(), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(result_dir)
    results.make_dirs('plotting', exist_ok=True)
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, config.x_dim),
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)

    # build the model
    with arg_scope([q_net, p_net], is_training=is_training):
        # derive the loss and lower-bound for training
        train_q_net = q_net(input_x)
        train_chain = train_q_net.chain(p_net,
                                        latent_names=['z'],
                                        latent_axis=0,
                                        observed={'x': input_x})

        baseline = baseline_net(input_x)
        cost, baseline_cost = \
            train_chain.vi.training.reinforce(baseline=baseline)
        loss = regularization_loss() + tf.reduce_mean(cost + baseline_cost)

        # derive the nll and logits output for testing
        test_q_net = q_net(input_x, n_z=config.test_n_z)
        test_chain = test_q_net.chain(p_net,
                                      latent_names=['z'],
                                      latent_axis=0,
                                      observed={'x': input_x})
        test_nll = -tf.reduce_mean(test_chain.vi.evaluation.is_loglikelihood())
        test_lb = tf.reduce_mean(test_chain.vi.lower_bound.elbo())

    # derive the optimizer
    optimizer = tf.train.AdamOptimizer(learning_rate)
    params = tf.trainable_variables()
    grads = optimizer.compute_gradients(loss, var_list=params)
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        train_op = optimizer.apply_gradients(grads)

    # derive the plotting function
    with tf.name_scope('plot_x'):
        plot_p_net = p_net(n_z=100, is_training=is_training)
        x_plots = tf.reshape(bernoulli_as_pixel(plot_p_net['x']), (-1, 28, 28))

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            session = get_default_session_or_error()
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename='plotting/{}.png'.format(
                                       loop.epoch),
                                   grid_size=(10, 10),
                                   results=results)

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = load_mnist()
    train_flow = bernoulli_flow(x_train,
                                config.batch_size,
                                shuffle=True,
                                skip_incomplete=True)
    test_flow = bernoulli_flow(x_test, config.test_batch_size, sample_now=True)

    with create_session().as_default():
        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       max_step=config.max_step,
                       summary_dir=(results.system_path('train_summary')
                                    if config.write_summary else None),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            trainer.anneal_after(learning_rate_var,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': test_lb
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()