def p_net(observed=None, n_y=None, n_z=None, n_samples=None): if n_samples is not None: warnings.warn('`n_samples` is deprecated, use `n_y` instead.') n_y = n_samples net = spt.BayesianNet(observed=observed) # sample y y = net.add('y', spt.Categorical(tf.zeros([1, config.n_clusters])), n_samples=n_y) # sample z ~ p(z|y) z = net.add('z', gaussian_mixture_prior(y, config.z_dim, config.n_clusters), group_ndims=1, n_samples=n_z, is_reparameterized=False) # compute the hidden features for x with arg_scope([spt.layers.dense], activation_fn=tf.nn.leaky_relu, kernel_regularizer=spt.layers.l2_regularizer( config.l2_reg)): h_x = z h_x = spt.layers.dense(h_x, 500) h_x = spt.layers.dense(h_x, 500) # sample x ~ p(x|z) x_logits = spt.layers.dense(h_x, config.x_dim, name='x_logits') x = net.add('x', spt.Bernoulli(logits=x_logits), group_ndims=1) return net
def q_net(x, observed=None, n_samples=None): net = spt.BayesianNet(observed=observed) # compute the hidden features with arg_scope([spt.layers.dense], activation_fn=tf.nn.leaky_relu, kernel_regularizer=spt.layers.l2_regularizer( config.l2_reg)): h_x = tf.to_float(x) h_x = spt.layers.dense(h_x, 500) h_x = spt.layers.dense(h_x, 500) # sample y ~ q(y|x) y_logits = spt.layers.dense(h_x, config.n_clusters, name='y_logits') y = net.add('y', spt.Categorical(y_logits), n_samples=n_samples) y_one_hot = tf.one_hot(y, config.n_clusters, dtype=tf.float32) # sample z ~ q(z|y,x) with arg_scope([spt.layers.dense], activation_fn=tf.nn.leaky_relu, kernel_regularizer=spt.layers.l2_regularizer( config.l2_reg)): if config.mean_field_assumption_for_q: # by mean-field-assumption we let q(z|y,x) = q(z|x) h_z = h_x z_n_samples = n_samples else: if n_samples is not None: h_z = tf.concat([ tf.tile(tf.reshape(h_x, [1, -1, 500]), tf.stack([n_samples, 1, 1])), y_one_hot ], axis=-1) else: h_z = tf.concat([h_x, y_one_hot], axis=-1) h_z = spt.layers.dense(h_z, 500) z_n_samples = None z_mean = spt.layers.dense(h_z, config.z_dim, name='z_mean') z_logstd = spt.layers.dense(h_z, config.z_dim, name='z_logstd') z = net.add('z', spt.Normal(mean=z_mean, logstd=z_logstd, is_reparameterized=False), n_samples=z_n_samples, group_ndims=1) return net
def p_net(observed=None, n_z=None, is_initializing=False): net = spt.BayesianNet(observed=observed) normalizer_fn = functools.partial(spt.layers.act_norm, initializing=is_initializing) # sample z ~ p(z) def make_component(i): normal = spt.Normal(mean=tf.get_variable('mean_{}'.format(i), shape=[1, config.z_dim], dtype=tf.float32, trainable=True), logstd=tf.maximum( tf.get_variable('logstd_{}'.format(i), shape=[1, config.z_dim], dtype=tf.float32, trainable=True), config.z_logstd_min)) return normal.expand_value_ndims(1) components = [ make_component(i) for i in range(config.n_mixture_components) ] mixture = spt.Mixture(categorical=spt.Categorical( logits=tf.zeros([1, config.n_mixture_components])), components=components, is_reparameterized=True) z = net.add('z', mixture, n_samples=n_z) # compute the hidden features with arg_scope([spt.layers.dense], activation_fn=tf.nn.leaky_relu, normalizer_fn=normalizer_fn, weight_norm=True, kernel_regularizer=spt.layers.l2_regularizer( config.l2_reg)): h_z = z h_z = spt.layers.dense(h_z, 500) h_z = spt.layers.dense(h_z, 500) # sample x ~ p(x|z) x_logits = spt.layers.dense(h_z, config.x_dim, name='x_logits') x = net.add('x', spt.Bernoulli(logits=x_logits), group_ndims=1) return net
def q_net(x, observed=None, n_z=None, is_initializing=False): net = spt.BayesianNet(observed=observed) normalizer_fn = functools.partial(spt.layers.act_norm, initializing=is_initializing) # compute the hidden features with arg_scope([spt.layers.dense], activation_fn=tf.nn.leaky_relu, normalizer_fn=normalizer_fn, weight_norm=True, kernel_regularizer=spt.layers.l2_regularizer( config.l2_reg)): h_x = tf.to_float(x) h_x = spt.layers.dense(h_x, 500) h_x = spt.layers.dense(h_x, 500) # sample z ~ q(z|x) components = [ spt.Normal(mean=spt.layers.dense(h_x, config.z_dim, name='z_mean_{}'.format(i)), logstd=spt.layers.dense(h_x, config.z_dim, name='z_logstd_{}'.format(i))) for i in range(config.n_mixture_components) ] mixture_param_shape = spt.utils.concat_shapes([ spt.utils.get_shape(components[0].mean), [config.n_mixture_components] ]) mixture = spt.Mixture( categorical=spt.Categorical(logits=tf.zeros(mixture_param_shape)), components=components, is_reparameterized=True) z = net.add('z', mixture, n_samples=n_z, group_ndims=1) return net
def p_net(observed=None, n_z=None, is_training=False, is_initializing=False): """ Generative net return p net structure. """ net = spt.BayesianNet(observed=observed) normalizer_fn = None if not config.act_norm else functools.partial( spt.layers.act_norm, axis=-1 if config.channels_last else -3, initializing=is_initializing, value_ndims=3, ) def make_component(i): normal = spt.Normal(mean=tf.get_variable('mean_{}'.format(i), shape=[1, config.z_dim], dtype=tf.float32, trainable=True), logstd=tf.maximum( tf.get_variable('logstd_{}'.format(i), shape=[1, config.z_dim], dtype=tf.float32, trainable=True), -1.)) return normal.expand_value_ndims(1) components = [make_component(i) for i in range(config.n_c)] mixture = spt.Mixture( categorical=spt.Categorical(logits=tf.zeros([1, config.n_c])), components=components, is_reparameterized=True) z = net.add('z', mixture, n_samples=n_z) print("=" * 10 + "pnet" + "=" * 10) # compute the hidden features with arg_scope([spt.layers.resnet_deconv2d_block], kernel_size=config.kernel_size2, shortcut_kernel_size=config.shortcut_kernel_size, activation_fn=tf.nn.elu, normalizer_fn=normalizer_fn, kernel_regularizer=spt.layers.l2_regularizer(config.l2_reg), channels_last=config.channels_last): print("px:%s" % z.get_shape()) h_z = spt.layers.dense( z, int(config.timeLength / (config.strides1**2) / (config.strides2**2) * int(config.metricNumber))) h_z = spt.ops.reshape_tail( h_z, ndims=1, shape=(int(config.timeLength / (config.strides1**2) / (config.strides2**2)), int(config.metricNumber), 1) if config.channels_last else (1, int(config.timeLength / (config.strides1**2) / (config.strides2**2)), int(config.metricNumber))) print("p1:%s" % h_z.get_shape()) h_z = spt.layers.resnet_deconv2d_block( h_z, 1, kernel_size=(config.kernel_size2, 1), strides=(config.strides2, 1)) print("p2:%s" % h_z.get_shape()) h_z = spt.layers.resnet_deconv2d_block( h_z, 1, kernel_size=(config.kernel_size2, 1), strides=(config.strides2, 1)) print("p3:%s" % h_z.get_shape()) h_z = spt.layers.resnet_deconv2d_block( h_z, 1, kernel_size=(config.kernel_size1, 1), strides=(config.strides1, 1)) print("p4:%s" % h_z.get_shape()) h_z = spt.layers.resnet_deconv2d_block( h_z, 1, kernel_size=(config.kernel_size1, 1), strides=(config.strides1, 1)) print("p5:%s" % h_z.get_shape()) # sample x ~ p(x|z) x_mean = spt.layers.conv2d(h_z, 1, (1, 1), padding='same', name='x_mean', channels_last=config.channels_last) x_logstd = spt.layers.conv2d( h_z, 1, (1, 1), padding='same', name='x_logstd', channels_last=config.channels_last, activation_fn=tf.nn.elu, ) + config.std_epsilon x = net.add('x', spt.Normal(mean=x_mean, logstd=x_logstd), n_samples=n_z, group_ndims=3) print("p6:%s, %s, %s" % (x_mean.get_shape(), x_logstd.get_shape(), x.get_shape())) return net
def q_net(x, observed=None, n_z=None, is_training=False, is_initializing=False): """ Inference net param x: input X, multivariate time series data. return q net structure. """ net = spt.BayesianNet(observed=observed) normalizer_fn = None if not config.act_norm else functools.partial( spt.layers.act_norm, axis=-1 if config.channels_last else -3, initializing=is_initializing, value_ndims=3, ) print("=" * 10 + "qnet" + "=" * 10) # compute the hidden features with arg_scope([spt.layers.resnet_conv2d_block], kernel_size=config.kernel_size2, shortcut_kernel_size=config.shortcut_kernel_size, activation_fn=tf.nn.elu, normalizer_fn=normalizer_fn, kernel_regularizer=spt.layers.l2_regularizer(config.l2_reg), channels_last=config.channels_last): print("qx:%s" % x.get_shape()) h_x = tf.reshape(tf.to_float(x), [-1, config.timeLength, config.metricNumber, 1] if config.channels_last else [-1, 1, config.timeLength, config.metricNumber]) print("q1:%s" % h_x.get_shape()) h_x = spt.layers.resnet_conv2d_block(h_x, 1, kernel_size=(config.kernel_size1, 1), strides=(config.strides1, 1)) print("q2:%s" % h_x.get_shape()) h_x = spt.layers.resnet_conv2d_block(h_x, 1, kernel_size=(config.kernel_size1, 1), strides=(config.strides1, 1)) print("q3:%s" % h_x.get_shape()) h_x = spt.layers.resnet_conv2d_block(h_x, 1, kernel_size=(config.kernel_size2, 1), strides=(config.strides2, 1)) print("q4:%s" % h_x.get_shape()) h_x = spt.layers.resnet_conv2d_block(h_x, 1, kernel_size=(config.kernel_size2, 1), strides=(config.strides2, 1)) print("q5:%s" % h_x.get_shape()) h_x = spt.ops.reshape_tail(h_x, ndims=3, shape=[-1]) print("q6:%s" % h_x.get_shape()) # sample y ~ q(y|x) c_logits = spt.layers.dense(h_x, config.n_c, name='c_logits') c = net.add('c', spt.Categorical(c_logits)) c_one_hot = tf.one_hot(c, config.n_c, dtype=tf.float32) print("qc:%s, %s, %s" % (c_logits.shape, c.shape, c_one_hot.shape)) h_z = h_x # sample z ~ q(z|x) z_mean = spt.layers.dense(h_z, config.z_dim, name='z_mean') z_logstd = spt.layers.dense( h_z, config.z_dim, name='z_logstd', activation_fn=tf.nn.elu) + config.std_epsilon z = net.add('z', spt.Normal(mean=z_mean, logstd=z_logstd), n_samples=n_z, group_ndims=1) print("q7:%s, %s, %s" % (z_mean.get_shape(), z_logstd.get_shape(), z.get_shape())) return net