Example #1
0
def CAM_net2D(x, nlabels, training, scope_reuse=False):

    with tf.variable_scope('classifier') as scope:

        if scope_reuse:
            scope.reuse_variables()

        init_filters = 32

        conv1_1 = layers.conv2D_layer_bn(x, 'conv1_1', num_filters=init_filters, training=training)

        pool1 = layers.maxpool2D_layer(conv1_1)

        conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=init_filters*2, training=training)

        pool2 = layers.maxpool2D_layer(conv2_1)

        conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=init_filters*4, training=training)
        conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=init_filters*4, training=training)

        conv4_1 = layers.conv2D_layer_bn(conv3_2, 'conv4_1', num_filters=init_filters*8, training=training)
        conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=init_filters*8, training=training)

        conv5_1 = layers.conv2D_layer_bn(conv4_2, 'conv5_1', num_filters=init_filters*16, training=training)
        conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=init_filters*16, training=training)

        convD_1 = layers.conv2D_layer_bn(conv5_2, 'feature_maps', num_filters=init_filters*16, training=training)

        fm_averages = layers.averagepool2D_layer(convD_1, name='fm_averages')

        logits = layers.dense_layer(fm_averages, 'weight_layer', hidden_units=nlabels, activation=tf.identity, add_bias=False)

    return logits
Example #2
0
def VGG16(x, nlabels, training, scope_reuse=False):

    with tf.variable_scope('classifier') as scope:

        if scope_reuse:
            scope.reuse_variables()

        init_filters = 64

        conv1_1 = layers.conv2D_layer_bn(x, 'conv1_1', num_filters=init_filters, training=training)
        conv1_2 = layers.conv2D_layer_bn(conv1_1, 'conv1_2', num_filters=init_filters, training=training)

        pool1 = layers.maxpool2D_layer(conv1_2)

        conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=init_filters*2, training=training)
        conv2_2 = layers.conv2D_layer_bn(conv2_1, 'conv2_2', num_filters=init_filters*2, training=training)

        pool2 = layers.maxpool2D_layer(conv2_2)

        conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=init_filters*4, training=training)
        conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=init_filters*4, training=training)
        conv3_3 = layers.conv2D_layer_bn(conv3_2, 'conv3_3', num_filters=init_filters*4, training=training)

        pool3 = layers.maxpool2D_layer(conv3_3)

        conv4_1 = layers.conv2D_layer_bn(pool3, 'conv4_1', num_filters=init_filters*8, training=training)
        conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=init_filters*8, training=training)
        conv4_3 = layers.conv2D_layer_bn(conv4_2, 'conv4_3', num_filters=init_filters*8, training=training)

        pool4 = layers.maxpool2D_layer(conv4_3)

        conv5_1 = layers.conv2D_layer_bn(pool4, 'conv5_1', num_filters=init_filters*8, training=training)
        conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=init_filters*8, training=training)
        conv5_3 = layers.conv2D_layer_bn(conv5_2, 'conv5_3', num_filters=init_filters*8, training=training)

        pool5 = layers.maxpool2D_layer(conv5_3)

        dense1 = layers.dense_layer_bn(pool5, 'dense1', hidden_units=init_filters*64, training=training)
        dense2 = layers.dense_layer_bn(dense1, 'dense2', hidden_units=init_filters*64, training=training)

        logits = layers.dense_layer_bn(dense2, 'dense3', hidden_units=nlabels, training=training, activation=tf.identity)


    return logits
Example #3
0
def rebuttalnet2D(x, nlabels, training, scope_reuse=False):

    with tf.variable_scope('classifier') as scope:

        if scope_reuse:
            scope.reuse_variables()

        init_filters = 32

        conv1_1 = layers.conv2D_layer_bn(x, 'conv1_1', num_filters=init_filters, training=training)

        pool1 = layers.maxpool2D_layer(conv1_1)

        conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=init_filters*2, training=training)

        pool2 = layers.maxpool2D_layer(conv2_1)

        conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=init_filters*4, training=training)
        conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=init_filters*4, training=training)

        pool3 = layers.maxpool2D_layer(conv3_2)

        conv4_1 = layers.conv2D_layer_bn(pool3, 'conv4_1', num_filters=init_filters*8, training=training)
        conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=init_filters*8, training=training)

        pool4 = layers.maxpool2D_layer(conv4_2)

        conv5_1 = layers.conv2D_layer_bn(pool4, 'conv5_1', num_filters=init_filters*16, training=training)
        conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=init_filters*16, training=training)

        convD_1 = layers.conv2D_layer_bn(conv5_2, 'convD_1', num_filters=init_filters*16, training=training)

        avg_pool = layers.averagepool2D_layer(convD_1, name='avg_pool')

        logits = layers.dense_layer_bn(avg_pool, 'dense2', hidden_units=nlabels, training=training, activation=tf.identity)


    return logits
Example #4
0
def C3D_fcn_16_2D_bn(x, training, scope_name='critic', scope_reuse=False):

    with tf.variable_scope(scope_name) as scope:
        if scope_reuse:
            scope.reuse_variables()

        conv1_1 = layers.conv2D_layer_bn(x, 'conv1_1', num_filters=16, training=training)

        pool1 = layers.maxpool2D_layer(conv1_1)

        conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=32, training=training)

        pool2 = layers.maxpool2D_layer(conv2_1)

        conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=64, training=training)
        conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=64, training=training)

        pool3 = layers.maxpool2D_layer(conv3_2)

        conv4_1 = layers.conv2D_layer_bn(pool3, 'conv4_1', num_filters=128, training=training)
        conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=128,training=training)

        pool4 = layers.maxpool2D_layer(conv4_2)

        conv5_1 = layers.conv2D_layer_bn(pool4, 'conv5_1', num_filters=256, training=training)
        conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=256, training=training)

        convD_1 = layers.conv2D_layer_bn(conv5_2, 'convD_1', num_filters=256, training=training)
        convD_2 = layers.conv2D_layer(convD_1,
                                         'convD_2',
                                         num_filters=1,
                                         kernel_size=(1,1,1),
                                         activation=tf.identity)

        logits = layers.averagepool2D_layer(convD_2, name='diagnosis_avg')


    return logits
Example #5
0
def unet_16_2D_bn(x, training, scope_name='generator'):

    n_ch_0 = 16

    with tf.variable_scope(scope_name):

        conv1_1 = layers.conv2D_layer_bn(x,
                                         'conv1_1',
                                         num_filters=n_ch_0,
                                         training=training)
        conv1_2 = layers.conv2D_layer_bn(conv1_1,
                                         'conv1_2',
                                         num_filters=n_ch_0,
                                         training=training)
        pool1 = layers.maxpool2D_layer(conv1_2)

        conv2_1 = layers.conv2D_layer_bn(pool1,
                                         'conv2_1',
                                         num_filters=n_ch_0 * 2,
                                         training=training)
        conv2_2 = layers.conv2D_layer_bn(conv2_1,
                                         'conv2_2',
                                         num_filters=n_ch_0 * 2,
                                         training=training)
        pool2 = layers.maxpool2D_layer(conv2_2)

        conv3_1 = layers.conv2D_layer_bn(pool2,
                                         'conv3_1',
                                         num_filters=n_ch_0 * 4,
                                         training=training)
        conv3_2 = layers.conv2D_layer_bn(conv3_1,
                                         'conv3_2',
                                         num_filters=n_ch_0 * 4,
                                         training=training)
        pool3 = layers.maxpool2D_layer(conv3_2)

        conv4_1 = layers.conv2D_layer_bn(pool3,
                                         'conv4_1',
                                         num_filters=n_ch_0 * 8,
                                         training=training)
        conv4_2 = layers.conv2D_layer_bn(conv4_1,
                                         'conv4_2',
                                         num_filters=n_ch_0 * 8,
                                         training=training)

        upconv3 = layers.deconv2D_layer_bn(conv4_2,
                                           name='upconv3',
                                           num_filters=n_ch_0,
                                           training=training)
        concat3 = layers.crop_and_concat_layer([upconv3, conv3_2], axis=-1)

        conv5_1 = layers.conv2D_layer_bn(concat3,
                                         'conv5_1',
                                         num_filters=n_ch_0 * 4,
                                         training=training)

        conv5_2 = layers.conv2D_layer_bn(conv5_1,
                                         'conv5_2',
                                         num_filters=n_ch_0 * 4,
                                         training=training)

        upconv2 = layers.deconv2D_layer_bn(conv5_2,
                                           name='upconv2',
                                           num_filters=n_ch_0,
                                           training=training)
        concat2 = layers.crop_and_concat_layer([upconv2, conv2_2], axis=-1)

        conv6_1 = layers.conv2D_layer_bn(concat2,
                                         'conv6_1',
                                         num_filters=n_ch_0 * 2,
                                         training=training)
        conv6_2 = layers.conv2D_layer_bn(conv6_1,
                                         'conv6_2',
                                         num_filters=n_ch_0 * 2,
                                         training=training)

        upconv1 = layers.deconv2D_layer_bn(conv6_2,
                                           name='upconv1',
                                           num_filters=n_ch_0,
                                           training=training)
        concat1 = layers.crop_and_concat_layer([upconv1, conv1_2], axis=-1)

        conv8_1 = layers.conv2D_layer_bn(concat1,
                                         'conv8_1',
                                         num_filters=n_ch_0,
                                         training=training)
        conv8_2 = layers.conv2D_layer(conv8_1,
                                      'conv8_2',
                                      num_filters=1,
                                      activation=tf.identity)

    return conv8_2