def __init__(self, model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec): """Create a kubernetes model server runner. Args: model_path: An IV-flavored model path. (See model_path_utils.py) serving_binary: A ServingBinary to run. serving_spec: A ServingSpec instance. """ assert serving_spec.WhichOneof('serving_platform') == 'kubernetes', ( 'ServingSpec configuration mismatch.') self._config = serving_spec.kubernetes self._model_path = model_path self._serving_binary = serving_binary self._serving_spec = serving_spec self._k8s_core_api = kube_utils.make_core_v1_api() if not kube_utils.is_inside_kfp(): raise NotImplementedError( 'KubernetesRunner should be running inside KFP.') self._executor_pod = kube_utils.get_current_kfp_pod(self._k8s_core_api) self._executor_container = _get_container_or_error( self._executor_pod, container_name=kube_utils.ARGO_MAIN_CONTAINER_NAME) self._namespace = kube_utils.get_kfp_namespace() self._label_dict = { _APP_KEY: _MODEL_SERVER_APP_LABEL, } # Pod name would be populated once creation request sent. self._pod_name = None # Endpoint would be populated once the Pod is running. self._endpoint = None
def _run_executor(self, execution_id: int, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Execute underlying component implementation. Runs executor container in a Kubernetes Pod and wait until it goes into `Succeeded` or `Failed` state. Args: execution_id: The ID of the execution. input_dict: Input dict from input key to a list of Artifacts. These are often outputs of another component in the pipeline and passed to the component by the orchestration system. output_dict: Output dict from output key to a list of Artifacts. These are often consumed by a dependent component. exec_properties: A dict of execution properties. These are inputs to pipeline with primitive types (int, string, float) and fully materialized when a pipeline is constructed. No dependency to other component or later injection from orchestration systems is necessary or possible on these values. Raises: RuntimeError: when the pod is in `Failed` state or unexpected failure from Kubernetes API. """ container_spec = cast(executor_spec.ExecutorContainerSpec, self._component_executor_spec) # Replace container spec with jinja2 template. container_spec = container_common.resolve_container_template( container_spec, input_dict, output_dict, exec_properties) pod_name = self._build_pod_name(execution_id) # TODO(hongyes): replace the default value from component config. try: namespace = kube_utils.get_kfp_namespace() except RuntimeError: namespace = 'kubeflow' pod_manifest = self._build_pod_manifest(pod_name, container_spec) core_api = kube_utils.make_core_v1_api() if kube_utils.is_inside_kfp(): launcher_pod = kube_utils.get_current_kfp_pod(core_api) pod_manifest['spec']['serviceAccount'] = launcher_pod.spec.service_account pod_manifest['spec'][ 'serviceAccountName'] = launcher_pod.spec.service_account_name pod_manifest['metadata'][ 'ownerReferences'] = container_common.to_swagger_dict( launcher_pod.metadata.owner_references) else: pod_manifest['spec']['serviceAccount'] = kube_utils.TFX_SERVICE_ACCOUNT pod_manifest['spec'][ 'serviceAccountName'] = kube_utils.TFX_SERVICE_ACCOUNT logging.info('Looking for pod "%s:%s".', namespace, pod_name) resp = kube_utils.get_pod(core_api, pod_name, namespace) if not resp: logging.info('Pod "%s:%s" does not exist. Creating it...', namespace, pod_name) logging.info('Pod manifest: %s', pod_manifest) try: resp = core_api.create_namespaced_pod( namespace=namespace, body=pod_manifest) except client.rest.ApiException as e: raise RuntimeError( 'Failed to created container executor pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) # Wait up to 300 seconds for the pod to move from pending to another status. logging.info('Waiting for pod "%s:%s" to start.', namespace, pod_name) kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_not_pending, condition_description='non-pending status', timeout_sec=300) logging.info('Start log streaming for pod "%s:%s".', namespace, pod_name) try: logs = core_api.read_namespaced_pod_log( name=pod_name, namespace=namespace, container=kube_utils.ARGO_MAIN_CONTAINER_NAME, follow=True, _preload_content=False).stream() except client.rest.ApiException as e: raise RuntimeError( 'Failed to stream the logs from the pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) for log in logs: logging.info(log.decode().rstrip('\n')) # Wait indefinitely for the pod to complete. resp = kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_done, condition_description='done state') if resp.status.phase == kube_utils.PodPhase.FAILED.value: raise RuntimeError('Pod "%s:%s" failed with status "%s".' % (namespace, pod_name, resp.status)) logging.info('Pod "%s:%s" is done.', namespace, pod_name)
def run_executor( self, execution_info: data_types.ExecutionInfo ) -> execution_result_pb2.ExecutorOutput: """Execute underlying component implementation. Runs executor container in a Kubernetes Pod and wait until it goes into `Succeeded` or `Failed` state. Args: execution_info: All the information that the launcher provides. Raises: RuntimeError: when the pod is in `Failed` state or unexpected failure from Kubernetes API. Returns: An ExecutorOutput instance """ context = placeholder_utils.ResolutionContext( exec_info=execution_info, executor_spec=self._executor_spec, platform_config=self._platform_config) container_spec = executor_specs.TemplatedExecutorContainerSpec( image=self._container_executor_spec.image, command=[ placeholder_utils.resolve_placeholder_expression(cmd, context) for cmd in self._container_executor_spec.commands ] or None, args=[ placeholder_utils.resolve_placeholder_expression(arg, context) for arg in self._container_executor_spec.args ] or None, ) pod_name = self._build_pod_name(execution_info) # TODO(hongyes): replace the default value from component config. try: namespace = kube_utils.get_kfp_namespace() except RuntimeError: namespace = 'kubeflow' pod_manifest = self._build_pod_manifest(pod_name, container_spec) core_api = kube_utils.make_core_v1_api() if kube_utils.is_inside_kfp(): launcher_pod = kube_utils.get_current_kfp_pod(core_api) pod_manifest['spec'][ 'serviceAccount'] = launcher_pod.spec.service_account pod_manifest['spec'][ 'serviceAccountName'] = launcher_pod.spec.service_account_name pod_manifest['metadata'][ 'ownerReferences'] = container_common.to_swagger_dict( launcher_pod.metadata.owner_references) else: pod_manifest['spec'][ 'serviceAccount'] = kube_utils.TFX_SERVICE_ACCOUNT pod_manifest['spec'][ 'serviceAccountName'] = kube_utils.TFX_SERVICE_ACCOUNT logging.info('Looking for pod "%s:%s".', namespace, pod_name) resp = kube_utils.get_pod(core_api, pod_name, namespace) if not resp: logging.info('Pod "%s:%s" does not exist. Creating it...', namespace, pod_name) logging.info('Pod manifest: %s', pod_manifest) try: resp = core_api.create_namespaced_pod(namespace=namespace, body=pod_manifest) except client.rest.ApiException as e: raise RuntimeError( 'Failed to created container executor pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) # Wait up to 300 seconds for the pod to move from pending to another status. logging.info('Waiting for pod "%s:%s" to start.', namespace, pod_name) kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_not_pending, condition_description='non-pending status', timeout_sec=300) logging.info('Start log streaming for pod "%s:%s".', namespace, pod_name) try: logs = core_api.read_namespaced_pod_log( name=pod_name, namespace=namespace, container=kube_utils.ARGO_MAIN_CONTAINER_NAME, follow=True, _preload_content=False).stream() except client.rest.ApiException as e: raise RuntimeError( 'Failed to stream the logs from the pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) for log in logs: logging.info(log.decode().rstrip('\n')) # Wait indefinitely for the pod to complete. resp = kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_done, condition_description='done state') if resp.status.phase == kube_utils.PodPhase.FAILED.value: raise RuntimeError('Pod "%s:%s" failed with status "%s".' % (namespace, pod_name, resp.status)) logging.info('Pod "%s:%s" is done.', namespace, pod_name) return execution_result_pb2.ExecutorOutput()