Example #1
0
 def __next__(self):
     if self._time is None:
         self._time = next(self.__times)
     else:
         newtime = next(self.__times)
         time_delta = newtime - self._time
         if isinstance(time_delta, dt.timedelta):
             time_delta = time_delta.total_seconds(
             ) / self._time_unit.total_seconds()
         npu.col_of(self.__process.noise_dim, 0.)
         variate_delta = np.sqrt(time_delta) * npu.to_ndim_2(
             next(self.__variates), ndim_1_to_col=True, copy=False)
         drift = npu.to_ndim_2(self.__process.drift(self._time,
                                                    self.__value),
                               ndim_1_to_col=True,
                               copy=False)
         diffusion = npu.to_ndim_2(self.__process.diffusion(
             self._time, self.__value),
                                   ndim_1_to_col=True,
                                   copy=False)
         self.__value += drift * time_delta + diffusion.dot(variate_delta)
         self._time = newtime
     v = np.copy(self.__value)
     if self.__flatten: v = v.flatten()
     return self._time, v
Example #2
0
    def __init__(self,
                 initial_value=None,
                 final_value=None,
                 initial_time=0.,
                 final_time=1.,
                 vol=None,
                 time_unit=dt.timedelta(days=1)):
        process_dim = 1

        self.__initial_value = None
        self.__final_value = None
        if initial_value is not None:
            self.__initial_value = npu.to_ndim_2(initial_value,
                                                 ndim_1_to_col=True,
                                                 copy=True)
            process_dim = npu.nrow(self.__initial_value)
        if final_value is not None:
            self.__final_value = npu.to_ndim_2(final_value,
                                               ndim_1_to_col=True,
                                               copy=True)
            process_dim = npu.nrow(self.__final_value)
        if self.__initial_value is None:
            self.__initial_value = npu.col_of(process_dim, 0.)
        if self.__final_value is None:
            self.__final_value = npu.col_of(process_dim, 0.)

        self.__vol = None
        if vol is not None:
            self.__vol = npu.to_ndim_2(vol, ndim_1_to_col=True, copy=True)
            process_dim = npu.nrow(self.__vol)
        if self.__vol is None: self.__vol = np.eye(process_dim)

        self.__initial_time = initial_time
        self.__final_time = final_time

        npc.check_col(self.__initial_value)
        npc.check_col(self.__final_value)
        npc.check_nrow(self.__initial_value, process_dim)
        npc.check_nrow(self.__final_value, process_dim)

        noise_dim = npu.ncol(self.__vol)
        self.__cov = stats.vol_to_cov(self.__vol)

        npu.make_immutable(self.__initial_value)
        npu.make_immutable(self.__final_value)
        npu.make_immutable(self.__vol)
        npu.make_immutable(self.__cov)

        self._to_string_helper_BrownianBridge = None
        self._str_BrownianBridge = None

        super(BrownianBridge,
              self).__init__(process_dim=process_dim,
                             noise_dim=noise_dim,
                             drift=lambda t, x: (self.__final_value - x) /
                             (self.__final_time - t),
                             diffusion=lambda t, x: self.__vol,
                             time_unit=time_unit)
Example #3
0
    def __init__(self,
                 mean=None,
                 cov=None,
                 vol=None,
                 dim=None,
                 copy=True,
                 do_not_init=False):
        if not do_not_init:
            if mean is not None and dim is not None and np.size(mean) == 1:
                mean = npu.col_of(dim, npu.to_scalar(mean))

            if mean is None and vol is None and cov is None:
                self._dim = 1 if dim is None else dim
                mean = npu.col_of(self._dim, 0.)
                cov = np.eye(self._dim)
                vol = np.eye(self._dim)

            self._dim, self._mean, self._vol, self._cov = None, None, None, None

            # TODO We don't currently check whether cov and vol are consistent, i.e. that cov = np.dot(vol, vol.T) -- should we?

            if mean is not None:
                self._mean = npu.to_ndim_2(mean, ndim_1_to_col=True, copy=copy)
                self._dim = npu.nrow(self._mean)
            if cov is not None:
                self._cov = npu.to_ndim_2(cov, ndim_1_to_col=True, copy=copy)
                self._dim = npu.nrow(self._cov)
            if vol is not None:
                self._vol = npu.to_ndim_2(vol, ndim_1_to_col=True, copy=copy)
                self._dim = npu.nrow(self._vol)

            if self._mean is None: self._mean = npu.col_of(self._dim, 0.)
            if self._cov is None and self._vol is None:
                self._cov = np.eye(self._dim)
                self._vol = np.eye(self._dim)
            npc.check_col(self._mean)
            npc.check_nrow(self._mean, self._dim)
            if self._cov is not None:
                npc.check_nrow(self._cov, self._dim)
                npc.check_square(self._cov)
            if self._vol is not None:
                npc.check_nrow(self._vol, self._dim)

            npu.make_immutable(self._mean)
            if self._cov is not None: npu.make_immutable(self._cov)
            if self._vol is not None: npu.make_immutable(self._vol)

        self._to_string_helper_WideSenseDistr = None
        self._str_WideSenseDistr = None

        super().__init__()
Example #4
0
    def __init__(self, mean_of_log=None, cov_of_log=None, vol_of_log=None, dim=None, copy=True):
        if mean_of_log is not None and dim is not None and np.size(mean_of_log) == 1:
            mean_of_log = npu.col_of(dim, npu.to_scalar(mean_of_log))
        
        if mean_of_log is None and vol_of_log is None and cov_of_log is None:
            self._dim = 1 if dim is None else dim
            mean_of_log = npu.col_of(self._dim, 0.)
            cov_of_log = np.eye(self._dim)
            vol_of_log = np.eye(self._dim)
            
        self._dim, self._mean_of_log, self._vol_of_log, self._cov_of_log = None, None, None, None
        
        # TODO We don't currently check whether cov_of_log and vol_of_log are consistent, i.e. that cov_of_log = np.dot(vol_of_log, vol_of_log.T) -- should we?
        
        if mean_of_log is not None:
            self._mean_of_log = npu.to_ndim_2(mean_of_log, ndim_1_to_col=True, copy=copy)
            self._dim = npu.nrow(self._mean_of_log)
        if cov_of_log is not None:
            self._cov_of_log = npu.to_ndim_2(cov_of_log, ndim_1_to_col=True, copy=copy)
            self._dim = npu.nrow(self._cov_of_log)
        if vol_of_log is not None:
            self._vol_of_log = npu.to_ndim_2(vol_of_log, ndim_1_to_col=True, copy=copy)
            self._dim = npu.nrow(self._vol_of_log)
        
        if self._mean_of_log is None: self._mean_of_log = npu.col_of(self._dim, 0.)
        if self._cov_of_log is None and self._vol_of_log is None:
            self._cov_of_log = np.eye(self._dim)
            self._vol_of_log = np.eye(self._dim)
        npc.check_col(self._mean_of_log)
        npc.check_nrow(self._mean_of_log, self._dim)
        if self._cov_of_log is not None:
            npc.check_nrow(self._cov_of_log, self._dim)
            npc.check_square(self._cov_of_log)
        if self._vol_of_log is not None:
            npc.check_nrow(self._vol_of_log, self._dim)

        if self._cov_of_log is None: self._cov_of_log = stats.vol_to_cov(self._vol_of_log)
        if self._vol_of_log is None: self._vol_of_log = stats.cov_to_vol(self._cov_of_log)
            
        npu.make_immutable(self._mean_of_log)
        npu.make_immutable(self._cov_of_log)
        npu.make_immutable(self._vol_of_log)

        mean = np.exp(self._mean_of_log + .5 * npu.col(*[self._cov_of_log[i,i] for i in range(self._dim)]))
        cov = np.array([[np.exp(self._mean_of_log[i,0] + self._mean_of_log[j,0] + .5 * (self._cov_of_log[i,i] + self._cov_of_log[j,j])) * (np.exp(self._cov_of_log[i,j]) - 1.) for j in range(self._dim)] for i in range(self._dim)])
        vol = stats.cov_to_vol(cov)
        
        self._to_string_helper_LogNormalDistr = None
        self._str_LogNormalDistr = None
        
        super().__init__(mean, cov, vol, self._dim, copy)
Example #5
0
    def test_wide_sense_distr(self):
        std_wide_sense_1d = distrs.WideSenseDistr(dim=1)
        npt.assert_almost_equal(std_wide_sense_1d.mean, 0.)
        npt.assert_almost_equal(std_wide_sense_1d.cov, 1.)
        npt.assert_almost_equal(std_wide_sense_1d.vol, 1.)
        
        with self.assertRaises(NotImplementedError):
            std_wide_sense_1d.sample()
        
        std_wide_sense_2d = distrs.WideSenseDistr(dim=2)
        npt.assert_almost_equal(std_wide_sense_2d.mean, npu.col_of(2, 0.))
        npt.assert_almost_equal(std_wide_sense_2d.cov, np.eye(2))
        npt.assert_almost_equal(std_wide_sense_2d.vol, np.eye(2))
        
        with self.assertRaises(NotImplementedError):
            std_wide_sense_2d.sample()
        
        sd1=3.; sd2=4.; cor=-.5

        wide_sense_2d = distrs.WideSenseDistr(mean=[1., 2.], cov=stats.make_cov_2d(sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(wide_sense_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(wide_sense_2d.cov, [[sd1*sd1, cor*sd1*sd2], [cor*sd1*sd2, sd2*sd2]])
        npt.assert_almost_equal(wide_sense_2d.vol, [[sd1, 0.], [cor*sd2, np.sqrt(1.-cor*cor)*sd2]])
        
        with self.assertRaises(NotImplementedError):
            wide_sense_2d.sample()

        wide_sense_2d = distrs.WideSenseDistr(mean=[1., 2.], vol=stats.make_vol_2d(sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(wide_sense_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(wide_sense_2d.cov, [[sd1*sd1, cor*sd1*sd2], [cor*sd1*sd2, sd2*sd2]])
        npt.assert_almost_equal(wide_sense_2d.vol, [[sd1, 0.], [cor*sd2, np.sqrt(1.-cor*cor)*sd2]])
        
        with self.assertRaises(NotImplementedError):
            wide_sense_2d.sample()
Example #6
0
    def __init__(self, mean=None, vol=None):
        if mean is None and vol is None:
            mean = 0.
            vol = 1.

        self._mean, self._vol = None, None

        if mean is not None:
            self._mean = npu.to_ndim_2(mean, ndim_1_to_col=True, copy=True)
            process_dim = npu.nrow(self._mean)
        if vol is not None:
            self._vol = npu.to_ndim_2(vol, ndim_1_to_col=True, copy=True)
            process_dim = npu.nrow(self._vol)

        if self._mean is None: self._mean = npu.col_of(process_dim, 0.)
        if self._vol is None: self._vol = np.eye(process_dim)

        npc.check_col(self._mean)
        npc.check_nrow(self._mean, process_dim)
        npc.check_nrow(self._vol, process_dim)

        noise_dim = npu.ncol(self._vol)
        self._cov = np.dot(self._vol, self._vol.T)

        npu.make_immutable(self._mean)
        npu.make_immutable(self._vol)
        npu.make_immutable(self._cov)

        self._to_string_helper_WienerProcess = None
        self._str_WienerProcess = None

        super(WienerProcess, self).__init__(process_dim=process_dim,
                                            noise_dim=noise_dim,
                                            drift=lambda t, x: self._mean,
                                            diffusion=lambda t, x: self._vol)
Example #7
0
 def __init__(self, pct_drift=None, pct_vol=None, time_unit=dt.timedelta(days=1)):
     if pct_drift is None and pct_vol is None:
         pct_drift = 0.; pct_vol = 1.
     
     self._pct_drift, self._pct_vol = None, None
     
     if pct_drift is not None:
         self._pct_drift = npu.to_ndim_2(pct_drift, ndim_1_to_col=True, copy=True)
         process_dim = npu.nrow(self._pct_drift)
     if pct_vol is not None:
         self._pct_vol = npu.to_ndim_2(pct_vol, ndim_1_to_col=True, copy=True)
         process_dim = npu.nrow(self._pct_vol)
     
     if self._pct_drift is None: self._pct_drift = npu.col_of(process_dim, 0.)
     if self._pct_vol is None: self._pct_vol = np.eye(process_dim)
     
     npc.check_col(self._pct_drift)
     npc.check_nrow(self._pct_drift, process_dim)
     npc.check_nrow(self._pct_vol, process_dim)
     
     noise_dim = npu.ncol(self._pct_vol)
     self._pct_cov = stats.vol_to_cov(self._pct_vol)
     
     npu.make_immutable(self._pct_drift)
     npu.make_immutable(self._pct_vol)
     npu.make_immutable(self._pct_cov)
     
     self._to_string_helper_GeometricBrownianMotion = None
     self._str_GeometricBrownianMotion = None
     
     super(GeometricBrownianMotion, self).__init__(process_dim=process_dim, noise_dim=noise_dim,
             drift=lambda t, x: self._pct_drift * x,
             diffusion=lambda t, x: x * self._pct_vol,
             time_unit=time_unit)
Example #8
0
    def __init__(self, transition=None, mean=None, vol=None):
        if transition is None and mean is None and vol is None:
            transition = 1.
            mean = 0.
            vol = 1.

        self._transition, self._mean, self._vol = None, None, None

        if transition is not None:
            self._transition = npu.to_ndim_2(transition,
                                             ndim_1_to_col=True,
                                             copy=True)
            process_dim = npu.nrow(self._transition)
        if mean is not None:
            self._mean = npu.to_ndim_2(mean, ndim_1_to_col=True, copy=True)
            process_dim = npu.nrow(self._mean)
        if vol is not None:
            self._vol = npu.to_ndim_2(vol, ndim_1_to_col=True, copy=True)
            process_dim = npu.nrow(self._vol)

        if self._transition is None: self._transition = np.eye(process_dim)
        if self._mean is None: self._mean = npu.col_of(process_dim, 0.)
        if self._vol is None: self._vol = np.eye(process_dim)

        npc.check_square(self._transition)
        npc.check_nrow(self._transition, process_dim)
        npc.check_col(self._mean)
        npc.check_nrow(self._mean, process_dim)
        npc.check_nrow(self._vol, process_dim)

        noise_dim = npu.ncol(self._vol)

        self._transition_x_2 = npu.kron_sum(self._transition, self._transition)
        self._transition_x_2_inverse = np.linalg.inv(self._transition_x_2)
        self._cov = np.dot(self._vol, self._vol.T)
        self._cov_vec = npu.vec(self._cov)

        self._cached_mean_reversion_factor = None
        self._cached_mean_reversion_factor_time_delta = None
        self._cached_mean_reversion_factor_squared = None
        self._cached_mean_reversion_factor_squared_time_delta = None

        npu.make_immutable(self._transition)
        npu.make_immutable(self._transition_x_2)
        npu.make_immutable(self._transition_x_2_inverse)
        npu.make_immutable(self._mean)
        npu.make_immutable(self._vol)
        npu.make_immutable(self._cov)
        npu.make_immutable(self._cov_vec)

        self._to_string_helper_OrnsteinUhlenbeckProcess = None
        self._str_OrnsteinUhlenbeckProcess = None

        super(OrnsteinUhlenbeckProcess, self).__init__(
            process_dim=process_dim,
            noise_dim=noise_dim,
            drift=lambda t, x: -np.dot(self._transition, x - self._mean),
            diffusion=lambda t, x: self._vol)
Example #9
0
    def __init__(self, mean=None, dim=None, copy=True):
        if mean is not None and dim is not None and np.size(mean) == 1:
            mean = npu.col_of(dim, npu.to_scalar(mean))

        if mean is None:
            dim = 1 if dim is None else dim
            mean = npu.col_of(dim, 0.)

        self._mean = npu.to_ndim_2(mean, ndim_1_to_col=True, copy=copy)
        if dim is None: dim = npu.nrow(self._mean)
        self._dim = dim

        npc.check_col(self._mean)
        npc.check_nrow(self._mean, self._dim)

        npu.make_immutable(self._mean)

        self._zero_cov = None

        self._to_string_helper_DiracDeltaDistr = None
        self._str_DiracDeltaDistr = None
Example #10
0
 def __init__(self,
              process,
              initial_value=None,
              times=None,
              variates=None,
              time_unit=dt.timedelta(days=1),
              flatten=False):
     checks.check_instance(process, proc.ItoProcess)
     self.__process = process
     self.__value = npu.to_ndim_2(
         initial_value, ndim_1_to_col=True,
         copy=True) if initial_value is not None else npu.col_of(
             process.process_dim, 0.)
     self.__times = times if times is not None else xtimes(0., None, 1.)
     self.__variates = variates if variates is not None else rnd.multivatiate_normals(
         ndim=process.noise_dim)
     self._time = None
     self._time_unit = time_unit
     self.__flatten = flatten
Example #11
0
    def test_multivariate_normal_distr(self):
        std_normal_1d = distrs.NormalDistr(dim=1)
        npt.assert_almost_equal(std_normal_1d.mean, 0.)
        npt.assert_almost_equal(std_normal_1d.cov, 1.)
        npt.assert_almost_equal(std_normal_1d.vol, 1.)

        std_normal_1d = distrs.NormalDistr(dim=2)
        npt.assert_almost_equal(std_normal_1d.mean, npu.col_of(2, 0.))
        npt.assert_almost_equal(std_normal_1d.cov, np.eye(2))
        npt.assert_almost_equal(std_normal_1d.vol, np.eye(2))

        sd1 = 3.
        sd2 = 4.
        cor = -.5

        normal_2d = distrs.NormalDistr(mean=[1., 2.],
                                       cov=distrs.NormalDistr.make_cov_2d(
                                           sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(normal_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(
            normal_2d.cov,
            [[sd1 * sd1, cor * sd1 * sd2], [cor * sd1 * sd2, sd2 * sd2]])
        npt.assert_almost_equal(
            normal_2d.vol,
            [[sd1, 0.], [cor * sd2, np.sqrt(1. - cor * cor) * sd2]])

        normal_2d = distrs.NormalDistr(mean=[1., 2.],
                                       vol=distrs.NormalDistr.make_vol_2d(
                                           sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(normal_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(
            normal_2d.cov,
            [[sd1 * sd1, cor * sd1 * sd2], [cor * sd1 * sd2, sd2 * sd2]])
        npt.assert_almost_equal(
            normal_2d.vol,
            [[sd1, 0.], [cor * sd2, np.sqrt(1. - cor * cor) * sd2]])
Example #12
0
    def test_normal_distr(self):
        rnd.random_state(np.random.RandomState(seed=42), force=True)

        std_normal_1d = distrs.NormalDistr(dim=1)
        npt.assert_almost_equal(std_normal_1d.mean, 0.)
        npt.assert_almost_equal(std_normal_1d.cov, 1.)
        npt.assert_almost_equal(std_normal_1d.vol, 1.)
        
        sample = std_normal_1d.sample()
        self.assertEqual(np.shape(sample), (1, 1))
        npt.assert_almost_equal(sample, [[ 0.49671415]])
        
        sample = std_normal_1d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 1))
        npt.assert_almost_equal(sample, [
                [-0.1382643 ],
                [ 0.64768854],
                [ 1.52302986],
                [-0.23415337],
                [-0.23413696],
                [ 1.57921282],
                [ 0.76743473],
                [-0.46947439],
                [ 0.54256004],
                [-0.46341769]])
        
        std_normal_2d = distrs.NormalDistr(dim=2)
        npt.assert_almost_equal(std_normal_2d.mean, npu.col_of(2, 0.))
        npt.assert_almost_equal(std_normal_2d.cov, np.eye(2))
        npt.assert_almost_equal(std_normal_2d.vol, np.eye(2))
        
        sample = std_normal_2d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 2))
        npt.assert_almost_equal(sample, [
                [-0.46572975,  0.24196227],
                [-1.91328024, -1.72491783],
                [-0.56228753, -1.01283112],
                [ 0.31424733, -0.90802408],
                [-1.4123037 ,  1.46564877],
                [-0.2257763 ,  0.0675282 ],
                [-1.42474819, -0.54438272],
                [ 0.11092259, -1.15099358],
                [ 0.37569802, -0.60063869],
                [-0.29169375, -0.60170661]])

        sd1=3.; sd2=4.; cor=-.5

        normal_2d = distrs.NormalDistr(mean=[1., 2.], cov=stats.make_cov_2d(sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(normal_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(normal_2d.cov, [[sd1*sd1, cor*sd1*sd2], [cor*sd1*sd2, sd2*sd2]])
        npt.assert_almost_equal(normal_2d.vol, [[sd1, 0.], [cor*sd2, np.sqrt(1.-cor*cor)*sd2]])

        sample = normal_2d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 2))
        npt.assert_almost_equal(sample, [
                [-3.09581812,  9.06710684],
                [ 5.00400357, -1.07912958],
                [ 4.10821238, -2.42324481],
                [ 2.58989516, -7.05256838],
                [ 2.07671635,  3.61955714],
                [ 0.38728403,  2.5195548 ],
                [-1.36010204, -0.88681309],
                [ 1.63968707, -1.29329703],
                [-0.61960168,  6.44566548],
                [ 5.53451941, -4.36131646]])

        normal_2d = distrs.NormalDistr(mean=[1., 2.], vol=stats.make_vol_2d(sd1=sd1, sd2=sd2, cor=cor))
        npt.assert_almost_equal(normal_2d.mean, npu.col(1., 2.))
        npt.assert_almost_equal(normal_2d.cov, [[sd1*sd1, cor*sd1*sd2], [cor*sd1*sd2, sd2*sd2]])
        npt.assert_almost_equal(normal_2d.vol, [[sd1, 0.], [cor*sd2, np.sqrt(1.-cor*cor)*sd2]])

        sample = normal_2d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 2))
        npt.assert_almost_equal(sample, [
                [ 0.4624506 , -0.26705979],
                [ 1.76344545,  5.54913479],
                [-2.76038957,  4.57609973],
                [ 2.35608833,  1.20642031],
                [-2.1218454 ,  5.16796697],
                [-0.85307657, -0.00850715],
                [ 5.28771297, -1.62048489],
                [-2.12592264,  7.1016208 ],
                [-0.46508111,  6.26189296],
                [ 3.15543223, -0.04269231]])
Example #13
0
    def test_dirac_delta_distr(self):
        std_dirac_delta_1d = distrs.DiracDeltaDistr(dim=1)
        npt.assert_almost_equal(std_dirac_delta_1d.mean, 0.)
        npt.assert_almost_equal(std_dirac_delta_1d.cov, 0.)
        npt.assert_almost_equal(std_dirac_delta_1d.vol, 0.)
        
        sample = std_dirac_delta_1d.sample()
        self.assertEqual(np.shape(sample), (1, 1))
        npt.assert_almost_equal(sample, [[ 0. ]])
        
        sample = std_dirac_delta_1d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 1))
        npt.assert_almost_equal(sample, [
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.],
                [ 0.]])
        
        std_dirac_delta_2d = distrs.DiracDeltaDistr(dim=2)
        npt.assert_almost_equal(std_dirac_delta_2d.mean, npu.col_of(2, 0.))
        npt.assert_almost_equal(std_dirac_delta_2d.cov, np.zeros((2, 2)))
        npt.assert_almost_equal(std_dirac_delta_2d.vol, np.zeros((2, 2)))
        
        sample = std_dirac_delta_2d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 2))
        npt.assert_almost_equal(sample, [
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.],
                [ 0.,  0.]])

        dirac_delta_2d = distrs.DiracDeltaDistr(mean=[1., 2.], dim=2)
        npt.assert_almost_equal(dirac_delta_2d.mean, [[1.], [2.]])
        npt.assert_almost_equal(dirac_delta_2d.cov, np.zeros((2, 2)))
        npt.assert_almost_equal(dirac_delta_2d.vol, np.zeros((2, 2)))
        
        sample = dirac_delta_2d.sample(size=10)
        self.assertEqual(np.shape(sample), (10, 2))
        npt.assert_almost_equal(sample, [
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.],
                [ 1.,  2.]])
Example #14
0
 def test_col_of(self):
     col = npu.col_of(5, 429.)
     npt.assert_almost_equal(col, np.array([[429.], [429.], [429.], [429.], [429.]]))