Example #1
0
def local_gpu_dot_to_dot22(node):
    """
    gpu_from_host(dot) -> gpudot(gpu_from_host)
    dot(host_from_gpu) -> host_from_gpu(gpudot)

    This optimization solves the vector-matrix multiplication issue by
    transforming the vector into a matrix, apply gpudot22 and reshaping
    the output.

    A more suitable solution would be to use the right cublas call
    """
    if node.op == gpu_from_host:
        host_input = node.inputs[0]
        if host_input.owner and host_input.owner.op == tensor.basic.dot:
            x, y = host_input.owner.inputs
            # case one: vector X matrix
            if _is_real_vector(x) and _is_real_matrix(y):
                new_op = GpuDimShuffle((False,), ["x", 0])
                shape_out = y.shape[1].dimshuffle(["x"])
                gpu_x = new_op(gpu_from_host(x))
                gpu_y = gpu_from_host(y)
            # case two: matrix X vector
            elif _is_real_matrix(x) and _is_real_vector(y):
                new_op = GpuDimShuffle((False,), [0, "x"])
                shape_out = x.shape[0].dimshuffle(["x"])
                gpu_x = gpu_from_host(x)
                gpu_y = new_op(gpu_from_host(y))
            else:
                return False

            return [GpuReshape(1)(gpu_dot22(gpu_x, gpu_y), shape_out)]
    if node.op == tensor.basic.dot:
        if numpy.any([(i.owner and i.owner.op == host_from_gpu) for i in node.inputs]):
            x, y = node.inputs
            if _is_real_vector(x) and _is_real_matrix(y):
                new_op = GpuDimShuffle((False,), ["x", 0])
                shape_out = y.shape[1].dimshuffle(["x"])
                gpu_x = new_op(gpu_from_host(x))
                gpu_y = gpu_from_host(y)

            elif _is_real_matrix(x) and _is_real_vector(y):
                new_op = GpuDimShuffle((False,), [0, "x"])
                shape_out = x.shape[0].dimshuffle(["x"])
                gpu_x = gpu_from_host(x)
                gpu_y = new_op(gpu_from_host(y))
            else:
                return False

            return [host_from_gpu(GpuReshape(1)(gpu_dot22(gpu_x, gpu_y), shape_out))]
    return False
Example #2
0
def local_gpu_dot22(node):
    """
    gpu_from_host(dot22) -> gpudot(gpu_from_host)

    dot(host_from_gpu) -> host_from_gpu(gpudot22)
    """
    if node.op == gpu_from_host:
        host_input = node.inputs[0]
        if host_input.owner and host_input.owner.op == tensor.blas._dot22:
            x, y = host_input.owner.inputs
            return [gpu_dot22(gpu_from_host(x), gpu_from_host(y))]
    if node.op == tensor.blas._dot22:
        if numpy.any([(i.owner and i.owner.op == host_from_gpu) for i in node.inputs]):
            x, y = node.inputs
            return [host_from_gpu(gpu_dot22(gpu_from_host(x), gpu_from_host(y)))]
    return False