Example #1
0
def reconstruct(
        autoencoder_in=None,
        dataset='mnist.pkl.gz',
        batch_size=8
               ):

    # Loads the parameters of a trained model
    # Takes a test case, run it through the 
    # trained autoencoder, and plot the reconstructed version
    # to see how our autoencoder generalizes an arbitrary case.
    
    if not autoencoder_in:
        W, hbias, vbias = load_parameters()
        autoencoder_in = autoencoder(W = W, hbias = hbias, vbias = vbias)
    
    test_set_x, test_set_y = load_data(dataset)[2]
    x = T.matrix('x')
    index = T.iscalar('index')

    pre_output = autoencoder_in.test_prop(input = x, params = autoencoder_in.params)
    reconstruct = autoencoder_in.layer_info[0](pre_output)
    error = autoencoder_in.gradient_reconstruction_error(input = x, phase = 'test', params = autoencoder_in.params)
                                        
    sgd_test = theano.function(
                    [index],
                    [reconstruct, error],
                    givens = {
                        x : test_set_x[
                                index * batch_size : 
                                (index + 1) * batch_size
                                      ]
                             },
                    name = 'sgd_test'
                              )
    
    original = test_set_x.get_value(borrow=True)[8:16]
    reconstructed, error = sgd_test(1)

    print 'Reconstruction error is %3f' % error
    
    images = np.append(
             original, reconstructed
                      ).reshape((batch_size * 2, 28*28))

    print images.shape[0], images.shape[1]

    images = Image.fromarray(
                tile_raster_images(
                    X = images,
                    img_shape = (28, 28),
                    tile_shape = (2, batch_size),
                    tile_spacing = (2,2)
                                  )
                            )
    
    images.save('autoencoder_reconstructed_images.png')
    
    pass
Example #2
0
def Sample(dataset="mnist.pkl.gz", random_initialization=True, sample_every=1000, no_samples=1):

    # Initialize sample randomly if random_initialization = True.
    # For a Gibbs chain, take a sample after (sample_every) steps.
    # no_samples: int, how many samples to be taken.

    RBMin = RBM(resume=True)
    datasets = load_data(dataset)
    test_set_x, test_set_y = datasets[2]  # Chose test set
    nrg = np.random.RandomState()

    if random_initialization:
        chain_start = theano.shared(nrg.uniform(low=0.0, high=1.0, size=(28 * 28,)).astype("float32"))
    else:
        chain_start = theano.shared(
            test_set_x.get_value(borrow=True)[np.floor(28 * 28 * nrg.uniform(low=0.0, high=5.0)).astype("int32")]
        )
        # Run a single round of Gibbs sampler
    ([h0_pre, h0_mean, h0, v1_pre, v1_mean, v1], updates) = theano.scan(
        RBMin.GS_vhv, outputs_info=[None, None, None, None, chain_start, None], n_steps=sample_every
    )

    # Update the updates dictionary
    updates[chain_start] = v1_mean[-1]
    GS = theano.function([], [v1_mean[-1], v1[-1]], updates=updates, name="Gibbs Sampler")

    # Plot samples.
    # Flattened and reshaped accordingly so that each row
    # represents an image
    start_time = timeit.default_timer()

    images = np.array([GS() for i in range(no_samples)], "float32").flatten().reshape((2 * no_samples, 28 * 28))
    images = Image.fromarray(
        tile_raster_images(X=images, img_shape=(28, 28), tile_shape=(no_samples, 2), tile_spacing=(1, 5))
    )

    images.save("RBM_generated_samples.png")
    end_time = timeit.default_timer()

    print "Sampling took %f minutes" % ((end_time - start_time) / 60.0)
Example #3
0
def train_RBM(
    RBMin=None,
    lr=0.01,
    lr_decay=0.1,
    momentum=0.9,
    improvement_ratio=0.95,
    batch_size=20,
    dataset="mnist.pkl.gz",
    epochs=15,
    n_hidden=500,
    n_chains=20,
    n_samples=10,
):

    # n_chains: int, # of parallel Gibbs chains to be used for sampling
    # n_samples: int, # samples to plot for each chain

    lr_init = lr
    if not RBMin:
        RBMin = RBM()

    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]
    test_set_x, test_set_y = datasets[2]
    index = T.iscalar()
    x = T.matrix()

    xent, updates = CD_k(RBMin, input=x, lr=lr)

    optimize = theano.function(
        [index],
        xent,
        updates=updates,
        givens={x: train_set_x[index * batch_size : (index + 1) * batch_size]},
        name="optimize",
    )

    n_batch = train_set_x.get_value().shape[0] / batch_size
    train_error = np.array([], "float64")
    learning_rate = []

    start_time = timeit.default_timer()
    for epoch in range(epochs):
        print "epoch %d:" % epoch, "\n"
        for iter in range(n_batch):
            error = optimize(iter)
            if iter % 250 == 0:
                # print Recon error every 5000 examples & save in train_error for later plotting
                print "Reconstruction error at iteration %d:" % (iter * batch_size), error
                train_error = np.append(train_error, error)

                # Check if the recon error of the last epoch has improved.
                # If yes, maintain the current learning rate.
                # Otherwise, lr = lr * lr_decay
                # Check last 25,000 examples.
                # Save the learning rate
        print "\n", "learning rate for epoch %d: %f" % (epoch, lr), "\n"
        learning_rate.append(lr)

        if epoch > 0:
            if (
                train_error[-5:].mean()
                > improvement_ratio
                * train_error[-5 - 50000.0 / (250 * batch_size) : -50000.0 / (250 * batch_size)].mean()
            ):
                lr = lr * lr_decay
            xent, updates = CD_k(RBMin, input=x, lr=lr)

            # Save models & train_error each epoch
        f = file("RBM_weights.save", "wb")
        pickle.dump(RBMin.W.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("RBM_hbias.save", "wb")
        pickle.dump(RBMin.hbias.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("RBM_vbias.save", "wb")
        pickle.dump(RBMin.vbias.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("train_error.save", "wb")
        pickle.dump(train_error, f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("learning_rate.save", "wb")
        pickle.dump(learning_rate, f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()

        # plot weights at each epoch
        image = Image.fromarray(
            tile_raster_images(
                X=RBMin.W.get_value(borrow=True).T, img_shape=(28, 28), tile_shape=(20, 20), tile_spacing=(1, 1)
            )
        )

        image.save("Weights_at_epoch_%d.png" % (epoch + 2))

        # Stop training if learning rate becomes too low
        # This means objective is simply not improving
        if lr <= lr_init * 0.001:
            break

            # plot the training procedure
    _, axis = pylab.subplots()
    grid = np.arange(len(train_error))
    axis.plot(grid, train_error)
    pylab.plot()
    pylab.show()

    end_time = timeit.default_timer()

    pretraining_time = end_time - start_time
    print "Pretraining took %f minutes" % (pretraining_time / 60.0)