Example #1
0
 def test_fastgsss(self, device, dtype, cheb):
     N = 1000
     ds = 0.1
     order = 12
     M = 10
     g = random_graph(N, ds, dtype=dtype, device=device)
     S, T = fastgsss(g, M, N // 10, order=order, cheby=cheb)
     print(S)
Example #2
0
 def test_estimater_lk_on_minnesota(self, dtype, device):
     N = 100
     g = random_graph(N, dtype=dtype, device=device)
     lmax = g.max_frequency(lap_type="comb")
     print(lmax)
     band_limit = 10
     lambda_k, cum_coh = estimate_lk(
         g, band_limit, lmax=lmax, lap_type="comb", verbose=False, num_estimation=1
     )
     print(lambda_k)
     print(cum_coh)
Example #3
0
 def test_rsbs(self, dtype, device, return_list):
     N = 100
     k = 50
     M = 30
     appropriate_num_rv = np.int32(2 * np.round(np.log(N)))
     g = random_graph(N, dtype=dtype, device=device)
     nodes, coh = rsbs(g, M, k, num_rv=appropriate_num_rv, return_list=return_list)
     print(nodes)
     if return_list:
         assert isinstance(nodes, list)
     else:
         assert isinstance(nodes, torch.Tensor)
Example #4
0
    def test_fastgsss_rec(self, device, dtype, cheb):
        N = 8
        g = random_graph(N, 0.4, dtype=dtype, device=device)
        fs, U = g.spectral(lap_type="sym")

        M = 4
        bw = 4
        nu = 3
        c = torch.rand(bw, dtype=dtype, device=device)
        f_band = U[:, :bw] @ c
        f_band_noise = f_band + math.sqrt(5e-3) * torch.randn(
            N, dtype=dtype, device=device)

        K = 12
        S, T = fastgsss(g, M, bw, nu, cheb, order=K)
        f_hat = recon_fastssss(f_band_noise[S], S, T, order=K)
        s, m = snr_and_mse(f_hat, f_band)
        assert m < 0.5
Example #5
0
def test_greedy_bga():
    N = 10
    num_iter = 10
    g = random_graph(N, 0.4)
    flag, vtx_color, A = is_bipartite_fix(g.to_dense(), fix_flag=False)
    assert not flag

    B, bset1 = greedy_bga(g.to_scipy("coo"), num_iter, verbose=True)
    flag1, vtx_color1, Ab = is_bipartite_fix(B, fix_flag=False)
    assert flag1
    assert (Ab - B).sum() == 0

    # no change
    C, bset2 = greedy_bga(B, num_iter, verbose=False)
    print(bset1)
    print(vtx_color1)
    print(bset2)
    assert (C - B).toarray().sum() == 0

    # since BFS-bipartite coloring root is chosen at random
    assert np.allclose(bset2, vtx_color1) or np.allclose(
        bset2, 1 - np.asarray(vtx_color1))
Example #6
0
 def test_rsbs_recon(self, dtype, device):
     N = 10
     k = 5
     M = 5
     appropriate_num_rv = np.int32(2 * np.round(np.log(N)))
     g = random_graph(N, 0.3, dtype=dtype, device=device, seed=2021)
     print(g.device())
     # since scikit-umfpack requires double scalars.
     if dtype == torch.double:
         nodes, coh = rsbs(g, M, k, num_rv=appropriate_num_rv, return_list=True)
         f = torch.rand(N, 1, dtype=dtype, device=device)
         f = f / f.norm()
         f_hat = recon_rsbs(
             f[nodes], S=nodes, L=g.L("comb"), cum_coh=coh, mu=0.1, reg_order=1
         )
         if torch.any(torch.isnan(f_hat)):
             print(
                 "This case leads to numerical instability and thus would be skipped"
             )
         else:
             s, m = snr_and_mse(f_hat, f)
             assert m < 1
Example #7
0
def test_check_symmetric():
    G = random_graph(6, 0.4)
    assert G.is_symmetric()
    print("\n", G.to_dense())
Example #8
0
 def test_rand_test(self, device, dtype, density):
     N = 10
     G = random_graph(N, density, True, dtype, device)
     assert G.density() - density < 2 / N * (N - 1)
     G = random_graph(N, density, False, dtype, device)
     assert G.density() - density < 2 / N * (N - 1)