Example #1
0
def main(depth=2, width=512, nb_epoch=30):
    prefer_gpu()
    # Configuration here isn't especially good. But, for demo..
    with Model.define_operators({"**": clone, ">>": chain}):
        model = ReLu(width) >> ReLu(width) >> Softmax()

    train_data, dev_data, _ = datasets.mnist()
    train_X, train_y = model.ops.unzip(train_data)
    dev_X, dev_y = model.ops.unzip(dev_data)

    dev_y = to_categorical(dev_y)
    with model.begin_training(train_X, train_y, L2=1e-6) as (trainer, optimizer):
        epoch_loss = [0.0]

        def report_progress():
            with model.use_params(optimizer.averages):
                print(epoch_loss[-1], model.evaluate(dev_X, dev_y), trainer.dropout)
            epoch_loss.append(0.0)

        trainer.each_epoch.append(report_progress)
        trainer.nb_epoch = nb_epoch
        trainer.dropout = 0.3
        trainer.batch_size = 128
        trainer.dropout_decay = 0.0
        train_X = model.ops.asarray(train_X, dtype="float32")
        y_onehot = to_categorical(train_y)
        for X, y in trainer.iterate(train_X, y_onehot):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            loss = ((yh - y) ** 2.0).sum() / y.shape[0]
            backprop(yh - y, optimizer)
            epoch_loss[-1] += loss
        with model.use_params(optimizer.averages):
            print("Avg dev.: %.3f" % model.evaluate(dev_X, dev_y))
            with open("out.pickle", "wb") as file_:
                pickle.dump(model, file_, -1)
Example #2
0
def mnist():
    train_data, dev_data, _ = datasets.mnist()
    train_X, train_y = NumpyOps().unzip(train_data)
    dev_X, dev_y = NumpyOps().unzip(dev_data)
    dev_y = to_categorical(dev_y, nb_classes=10)
    train_y = to_categorical(dev_y, nb_classes=10)
    return (train_X[:1000], train_y[:1000]), (dev_X, dev_y)
Example #3
0
def main(depth=2, width=512, nb_epoch=30):
    prefer_gpu()
    torch.set_num_threads(1)

    train_data, dev_data, _ = datasets.mnist()
    train_X, train_y = Model.ops.unzip(train_data)
    dev_X, dev_y = Model.ops.unzip(dev_data)

    dev_y = to_categorical(dev_y)
    model = PyTorchWrapper(
        PyTorchFeedForward(
            depth=depth,
            width=width,
            input_size=train_X.shape[1],
            output_size=dev_y.shape[1],
        ))
    with model.begin_training(train_X, train_y,
                              L2=1e-6) as (trainer, optimizer):
        epoch_loss = [0.0]

        def report_progress():
            # with model.use_params(optimizer.averages):
            print(epoch_loss[-1], model.evaluate(dev_X, dev_y),
                  trainer.dropout)
            epoch_loss.append(0.0)

        trainer.each_epoch.append(report_progress)
        trainer.nb_epoch = nb_epoch
        trainer.dropout = 0.3
        trainer.batch_size = 128
        trainer.dropout_decay = 0.0
        train_X = model.ops.asarray(train_X, dtype="float32")
        y_onehot = to_categorical(train_y)
        for X, y in trainer.iterate(train_X, y_onehot):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            loss = ((yh - y)**2.0).sum() / y.shape[0]
            backprop(yh - y, optimizer)
            epoch_loss[-1] += loss
        with model.use_params(optimizer.averages):
            print("Avg dev.: %.3f" % model.evaluate(dev_X, dev_y))
            with open("out.pickle", "wb") as file_:
                pickle.dump(model, file_, -1)
Example #4
0
def main(depth=2, width=512, nb_epoch=30):
    prefer_gpu()
    torch.set_num_threads(1)

    train_data, dev_data, _ = datasets.mnist()
    train_X, train_y = Model.ops.unzip(train_data)
    dev_X, dev_y = Model.ops.unzip(dev_data)

    dev_y = to_categorical(dev_y)
    model = PyTorchWrapper(
        PyTorchFeedForward(
            depth=depth,
            width=width,
            input_size=train_X.shape[1],
            output_size=dev_y.shape[1],
        )
    )
    with model.begin_training(train_X, train_y, L2=1e-6) as (trainer, optimizer):
        epoch_loss = [0.0]

        def report_progress():
            # with model.use_params(optimizer.averages):
            print(epoch_loss[-1], model.evaluate(dev_X, dev_y), trainer.dropout)
            epoch_loss.append(0.0)

        trainer.each_epoch.append(report_progress)
        trainer.nb_epoch = nb_epoch
        trainer.dropout = 0.3
        trainer.batch_size = 128
        trainer.dropout_decay = 0.0
        train_X = model.ops.asarray(train_X, dtype="float32")
        y_onehot = to_categorical(train_y)
        for X, y in trainer.iterate(train_X, y_onehot):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            loss = ((yh - y) ** 2.0).sum() / y.shape[0]
            backprop(yh - y, optimizer)
            epoch_loss[-1] += loss
        with model.use_params(optimizer.averages):
            print("Avg dev.: %.3f" % model.evaluate(dev_X, dev_y))
            with open("out.pickle", "wb") as file_:
                pickle.dump(model, file_, -1)
Example #5
0
def main(depth=2, width=512, nb_epoch=30):
    if CupyOps.xp != None:
        Model.ops = CupyOps()
        Model.Ops = CupyOps
    # Configuration here isn't especially good. But, for demo..
    with Model.define_operators({'**': clone, '>>': chain}):
        model = ReLu(width) >> ReLu(width) >> Softmax()

    train_data, dev_data, _ = datasets.mnist()
    train_X, train_y = model.ops.unzip(train_data)
    dev_X, dev_y = model.ops.unzip(dev_data)

    dev_y = to_categorical(dev_y)
    with model.begin_training(train_X, train_y,
                              L2=1e-6) as (trainer, optimizer):
        epoch_loss = [0.]

        def report_progress():
            with model.use_params(optimizer.averages):
                print(epoch_loss[-1], model.evaluate(dev_X, dev_y),
                      trainer.dropout)
            epoch_loss.append(0.)

        trainer.each_epoch.append(report_progress)
        trainer.nb_epoch = nb_epoch
        trainer.dropout = 0.3
        trainer.batch_size = 128
        trainer.dropout_decay = 0.0
        train_X = model.ops.asarray(train_X, dtype='float32')
        y_onehot = to_categorical(train_y)
        for X, y in trainer.iterate(train_X, y_onehot):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            loss = ((yh - y)**2.).sum() / y.shape[0]
            backprop(yh - y, optimizer)
            epoch_loss[-1] += loss
        with model.use_params(optimizer.averages):
            print('Avg dev.: %.3f' % model.evaluate(dev_X, dev_y))
            with open('out.pickle', 'wb') as file_:
                pickle.dump(model, file_, -1)