Example #1
0
def build_model(nr_class, width, depth, conv_depth, **kwargs):
    with Model.define_operators({"|": concatenate, ">>": chain, "**": clone}):
        embed = (HashEmbed(width, 5000, column=1)
                 | StaticVectors("spacy_pretrained_vectors", width, column=5)
                 | HashEmbed(width // 2, 750, column=2)
                 | HashEmbed(width // 2, 750, column=3)
                 | HashEmbed(width // 2, 750, column=4)) >> LN(Maxout(width))

        sent2vec = (flatten_add_lengths >> with_getitem(
            0,
            embed >> Residual(ExtractWindow(nW=1) >> LN(Maxout(width)))**
            conv_depth,
        ) >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual(
            LN(Maxout(width)))**depth)

        model = (
            foreach(sent2vec, drop_factor=2.0) >> flatten_add_lengths
            # This block would allow the model to learn some cross-sentence
            # features. It's not useful on this problem. It might make more
            # sense to use a BiLSTM here, following Liang et al (2016).
            # >> with_getitem(0,
            #    Residual(ExtractWindow(nW=1) >> LN(Maxout(width))) ** conv_depth
            # )
            >> ParametricAttention(width, hard=False) >> Pooling(sum_pool) >>
            Residual(LN(Maxout(width)))**depth >> Softmax(nr_class))
    model.lsuv = False
    return model
Example #2
0
def create_pretraining_model(nlp, tok2vec, objective="cosine", nr_char=10):
    """Define a network for the pretraining. We simply add an output layer onto
    the tok2vec input model. The tok2vec input model needs to be a model that
    takes a batch of Doc objects (as a list), and returns a list of arrays.
    Each array in the output needs to have one row per token in the doc.
    """
    if objective == "characters":
        out_sizes = [256] * nr_char
        output_layer = chain(LN(Maxout(300, pieces=3)),
                             MultiSoftmax(out_sizes, 300))
    else:
        output_size = nlp.vocab.vectors.data.shape[1]
        output_layer = chain(LN(Maxout(300, pieces=3)),
                             Affine(output_size, drop_factor=0.0))
    # This is annoying, but the parser etc have the flatten step after
    # the tok2vec. To load the weights in cleanly, we need to match
    # the shape of the models' components exactly. So what we cann
    # "tok2vec" has to be the same set of processes as what the components do.
    tok2vec = chain(tok2vec, flatten)
    model = chain(tok2vec, output_layer)
    model = masked_language_model(nlp.vocab, model)
    model.tok2vec = tok2vec
    model.output_layer = output_layer
    model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
    return model
Example #3
0
def main(width=100,
         depth=4,
         vector_length=64,
         min_batch_size=1,
         max_batch_size=32,
         learn_rate=0.001,
         momentum=0.9,
         dropout=0.5,
         dropout_decay=1e-4,
         nb_epoch=20,
         L2=1e-6):
    cfg = dict(locals())
    print(cfg)
    if cupy is not None:
        print("Using GPU")
        Model.ops = CupyOps()
    train_data, check_data, nr_tag = ancora_pos_tags()

    extracter = FeatureExtracter('es', attrs=[LOWER, SHAPE, PREFIX, SUFFIX])
    Model.lsuv = True
    with Model.define_operators({
            '**': clone,
            '>>': chain,
            '+': add,
            '|': concatenate
    }):
        lower_case = HashEmbed(width, 100, column=0)
        shape = HashEmbed(width // 2, 200, column=1)
        prefix = HashEmbed(width // 2, 100, column=2)
        suffix = HashEmbed(width // 2, 100, column=3)

        model = (with_flatten(
            (lower_case | shape | prefix | suffix) >> Maxout(width, pieces=3)
            >> Residual(ExtractWindow(nW=1) >> Maxout(width, pieces=3))**depth
            >> Softmax(nr_tag),
            pad=depth))

    train_X, train_y = preprocess(model.ops, extracter, train_data, nr_tag)
    dev_X, dev_y = preprocess(model.ops, extracter, check_data, nr_tag)

    n_train = float(sum(len(x) for x in train_X))
    global epoch_train_acc
    with model.begin_training(train_X[:5000], train_y[:5000],
                              **cfg) as (trainer, optimizer):
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        for X, y in trainer.iterate(train_X, train_y):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)

            gradient = [yh[i] - y[i] for i in range(len(yh))]

            backprop(gradient, optimizer)

            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
    with model.use_params(trainer.optimizer.averages):
        print(model.evaluate(dev_X, model.ops.flatten(dev_y)))
        with open('/tmp/model.pickle', 'wb') as file_:
            pickle.dump(model, file_)
Example #4
0
def create_pretraining_model(nlp, tok2vec, objective="basic"):
    """Define a network for the pretraining."""
    output_size = nlp.vocab.vectors.data.shape[1]
    # This is annoying, but the parser etc have the flatten step after
    # the tok2vec. To load the weights in cleanly, we need to match
    # the shape of the models' components exactly. So what we cann
    # "tok2vec" has to be the same set of processes as what the components do.
    with Model.define_operators({">>": chain, "|": concatenate}):

        l2r_model = (
            tok2vec.l2r
            >> flatten
            >> LN(Maxout(output_size, tok2vec.l2r.nO, pieces=3))
            >> zero_init(Affine(output_size, drop_factor=0.0))
        )
        r2l_model = (
            tok2vec.r2l
            >> flatten
            >> LN(Maxout(output_size, tok2vec.r2l.nO, pieces=3))
            >> zero_init(Affine(output_size, drop_factor=0.0))
        )

        model = tok2vec.embed >> (l2r_model | r2l_model)

    model.tok2vec = tok2vec
    model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
    tok2vec.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
    tokvecs = tok2vec([nlp.make_doc('hello there'), nlp.make_doc(u'and hello')])
    print(tokvecs.shape)
    return model
Example #5
0
def Tok2Vec(width, embed_size, **kwargs):
    pretrained_vectors = kwargs.get("pretrained_vectors", None)
    cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
    subword_features = kwargs.get("subword_features", True)
    conv_depth = kwargs.get("conv_depth", 4)
    bilstm_depth = kwargs.get("bilstm_depth", 0)
    cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
    with Model.define_operators(
        {">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
    ):
        norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
        if subword_features:
            prefix = HashEmbed(
                width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
            )
            suffix = HashEmbed(
                width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
            )
            shape = HashEmbed(
                width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
            )
        else:
            prefix, suffix, shape = (None, None, None)
        if pretrained_vectors is not None:
            glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))

            if subword_features:
                embed = uniqued(
                    (glove | norm | prefix | suffix | shape)
                    >> LN(Maxout(width, width * 5, pieces=3)),
                    column=cols.index(ORTH),
                )
            else:
                embed = uniqued(
                    (glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
                    column=cols.index(ORTH),
                )
        elif subword_features:
            embed = uniqued(
                (norm | prefix | suffix | shape)
                >> LN(Maxout(width, width * 4, pieces=3)),
                column=cols.index(ORTH),
            )
        else:
            embed = norm

        convolution = Residual(
            ExtractWindow(nW=1)
            >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
        )
        tok2vec = FeatureExtracter(cols) >> with_flatten(
            embed >> convolution ** conv_depth, pad=conv_depth
        )
        if bilstm_depth >= 1:
            tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
        # Work around thinc API limitations :(. TODO: Revise in Thinc 7
        tok2vec.nO = width
        tok2vec.embed = embed
    return tok2vec
Example #6
0
def build_text_classifier(nr_class, width=64, **cfg):
    nr_vector = cfg.get('nr_vector', 5000)
    pretrained_dims = cfg.get('pretrained_dims', 0)
    with Model.define_operators({
            '>>': chain,
            '+': add,
            '|': concatenate,
            '**': clone
    }):
        if cfg.get('low_data') and pretrained_dims:
            model = (SpacyVectors >> flatten_add_lengths >> with_getitem(
                0, Affine(width, pretrained_dims)) >>
                     ParametricAttention(width) >> Pooling(sum_pool) >>
                     Residual(ReLu(width, width))**2 >> zero_init(
                         Affine(nr_class, width, drop_factor=0.0)) >> logistic)
            return model

        lower = HashEmbed(width, nr_vector, column=1)
        prefix = HashEmbed(width // 2, nr_vector, column=2)
        suffix = HashEmbed(width // 2, nr_vector, column=3)
        shape = HashEmbed(width // 2, nr_vector, column=4)

        trained_vectors = (FeatureExtracter(
            [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]) >> with_flatten(
                uniqued((lower | prefix | suffix | shape) >> LN(
                    Maxout(width, width + (width // 2) * 3)),
                        column=0)))

        if pretrained_dims:
            static_vectors = (
                SpacyVectors >> with_flatten(Affine(width, pretrained_dims)))
            # TODO Make concatenate support lists
            vectors = concatenate_lists(trained_vectors, static_vectors)
            vectors_width = width * 2
        else:
            vectors = trained_vectors
            vectors_width = width
            static_vectors = None
        cnn_model = (
            vectors >> with_flatten(
                LN(Maxout(width, vectors_width)) >> Residual(
                    (ExtractWindow(nW=1) >> LN(Maxout(width, width * 3))))**2,
                pad=2) >> flatten_add_lengths >> ParametricAttention(width) >>
            Pooling(sum_pool) >> Residual(zero_init(Maxout(width, width))) >>
            zero_init(Affine(nr_class, width, drop_factor=0.0)))

        linear_model = (
            _preprocess_doc >> LinearModel(nr_class, drop_factor=0.))

        model = ((linear_model | cnn_model) >> zero_init(
            Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic)
    model.nO = nr_class
    model.lsuv = False
    return model
Example #7
0
def Tok2Vec(width, embed_size, **kwargs):
    pretrained_vectors = kwargs.get('pretrained_vectors', None)
    cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2)
    cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
    with Model.define_operators({
            '>>': chain,
            '|': concatenate,
            '**': clone,
            '+': add,
            '*': reapply
    }):
        norm = HashEmbed(width,
                         embed_size,
                         column=cols.index(NORM),
                         name='embed_norm')
        prefix = HashEmbed(width,
                           embed_size // 2,
                           column=cols.index(PREFIX),
                           name='embed_prefix')
        suffix = HashEmbed(width,
                           embed_size // 2,
                           column=cols.index(SUFFIX),
                           name='embed_suffix')
        shape = HashEmbed(width,
                          embed_size // 2,
                          column=cols.index(SHAPE),
                          name='embed_shape')
        if pretrained_vectors is not None:
            glove = StaticVectors(pretrained_vectors,
                                  width,
                                  column=cols.index(ID))

            embed = uniqued((glove | norm | prefix | suffix | shape) >> LN(
                Maxout(width, width * 5, pieces=3)),
                            column=cols.index(ORTH))
        else:
            embed = uniqued((norm | prefix | suffix | shape) >> LN(
                Maxout(width, width * 4, pieces=3)),
                            column=cols.index(ORTH))

        convolution = Residual(
            ExtractWindow(
                nW=1) >> LN(Maxout(width, width *
                                   3, pieces=cnn_maxout_pieces)))

        tok2vec = (FeatureExtracter(cols) >> with_flatten(
            embed >> convolution**4, pad=4))
        # Work around thinc API limitations :(. TODO: Revise in Thinc 7
        tok2vec.nO = width
        tok2vec.embed = embed
    return tok2vec
Example #8
0
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
    if "entity_width" not in cfg:
        raise ValueError(Errors.E144.format(param="entity_width"))

    conv_depth = cfg.get("conv_depth", 2)
    cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
    pretrained_vectors = cfg.get("pretrained_vectors", None)
    context_width = cfg.get("entity_width")

    with Model.define_operators({">>": chain, "**": clone}):
        # context encoder
        tok2vec = Tok2Vec(
            width=hidden_width,
            embed_size=embed_width,
            pretrained_vectors=pretrained_vectors,
            cnn_maxout_pieces=cnn_maxout_pieces,
            subword_features=True,
            conv_depth=conv_depth,
            bilstm_depth=0,
        )

        model = (
            tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> Residual(
                zero_init(Maxout(hidden_width, hidden_width))) >> zero_init(
                    Affine(context_width, hidden_width, drop_factor=0.0)))

        model.tok2vec = tok2vec
        model.nO = context_width
    return model
def FancyEmbed(width, rows, cols=(ORTH, SHAPE, PREFIX, SUFFIX)):
    from thinc.i2v import HashEmbed
    from thinc.v2v import Maxout
    from thinc.api import chain, concatenate
    tables = [HashEmbed(width, rows, column=i) for i in range(len(cols))]
    return chain(concatenate(*tables),
                 Maxout(width, width * len(tables), pieces=3))
Example #10
0
def main(width=128,
         depth=1,
         vector_length=128,
         min_batch_size=16,
         max_batch_size=16,
         learn_rate=0.001,
         momentum=0.9,
         dropout=0.5,
         dropout_decay=1e-4,
         nb_epoch=20,
         L2=1e-6):
    using_gpu = prefer_gpu()
    if using_gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
    cfg = dict(locals())
    print(cfg)
    train_data, check_data, nr_tag = ancora_pos_tags()
    train_data = list(train_data)
    check_data = list(check_data)

    extracter = FeatureExtracter('es', attrs=[LOWER, SHAPE, PREFIX, SUFFIX])
    with Model.define_operators({
            '**': clone,
            '>>': chain,
            '+': add,
            '|': concatenate
    }):
        lower_case = HashEmbed(width, 100, column=0)
        shape = HashEmbed(width // 2, 200, column=1)
        prefix = HashEmbed(width // 2, 100, column=2)
        suffix = HashEmbed(width // 2, 100, column=3)

        model = (with_flatten(
            (lower_case | shape | prefix | suffix) >> Maxout(width, pieces=3))
                 >> PyTorchBiLSTM(width, width, depth) >> with_flatten(
                     Softmax(nr_tag)))

    train_X, train_y = preprocess(model.ops, extracter, train_data, nr_tag)
    dev_X, dev_y = preprocess(model.ops, extracter, check_data, nr_tag)

    n_train = float(sum(len(x) for x in train_X))
    global epoch_train_acc
    with model.begin_training(train_X[:10], train_y[:10],
                              **cfg) as (trainer, optimizer):
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        for X, y in trainer.iterate(train_X, train_y):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)

            gradient = [yh[i] - y[i] for i in range(len(yh))]

            backprop(gradient, optimizer)

            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
    print(model.evaluate(dev_X, model.ops.flatten(dev_y)))
    with open('/tmp/model.pickle', 'wb') as file_:
        pickle.dump(model, file_)
Example #11
0
def my_tok_to_vec(width, embed_size, pretrained_vectors, **kwargs):
    # Circular imports :(
    from spacy._ml import PyTorchBiLSTM

    cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
    conv_depth = kwargs.get("conv_depth", 4)
    bilstm_depth = kwargs.get("bilstm_depth", 0)
    cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
    storage = []
    with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
        # norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
        # prefix = HashEmbed(
        #     width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
        # )
        # suffix = HashEmbed(
        #     width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
        # )
        shape = HashEmbed(
            width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
        )
        glove = Vectors(storage, pretrained_vectors, width, column=cols.index(NORM), )
        vec_width = glove.nV

        embed = uniqued(
            (glove | shape)
            >> LN(Maxout(width, width + vec_width, pieces=3)),
            column=cols.index(ORTH),
        )

        convolution = Residual(
            ExtractWindow(nW=1)
            >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
        )

        tok2vec = SaveDoc(storage) >> FeatureExtracter(cols) >> with_flatten(
            embed >> convolution ** conv_depth, pad=conv_depth
        )

        if bilstm_depth >= 1:
            tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
        # Work around thinc API limitations :(. TODO: Revise in Thinc 7

        tok2vec.nO = width
        tok2vec.embed = embed
    return tok2vec
Example #12
0
def build_model(nr_class, width, depth, conv_depth, **kwargs):
    with Model.define_operators({'|': concatenate, '>>': chain, '**': clone}):
        embed = ((HashEmbed(width, 5000, column=1)
                  | StaticVectors('spacy_pretrained_vectors', width, column=5)
                  | HashEmbed(width // 2, 750, column=2)
                  | HashEmbed(width // 2, 750, column=3)
                  | HashEmbed(width // 2, 750, column=4)) >> LN(Maxout(width)))

        sent2vec = (flatten_add_lengths >> with_getitem(
            0, embed >> Residual(ExtractWindow(nW=1) >> LN(Maxout(width)))**
            conv_depth) >> ParametricAttention(width) >> Pooling(sum_pool) >>
                    Residual(LN(Maxout(width)))**depth)

        model = (foreach(sent2vec, drop_factor=2.0) >> flatten_add_lengths >>
                 ParametricAttention(width, hard=False) >> Pooling(sum_pool) >>
                 Residual(LN(Maxout(width)))**depth >> Softmax(nr_class))
    model.lsuv = False
    return model
Example #13
0
def MaxoutWindowEncoder(config):
    nO = config["width"]
    nW = config["window_size"]
    nP = config["pieces"]
    depth = config["depth"]

    cnn = chain(ExtractWindow(nW=nW),
                LayerNorm(Maxout(nO, nO * ((nW * 2) + 1), pieces=nP)))
    model = clone(Residual(cnn), depth)
    model.nO = nO
    model.receptive_field = nW * depth
    return model
Example #14
0
def build_model(nr_class, width, depth, conv_depth, vectors_name, **kwargs):
    with Model.define_operators({"|": concatenate, ">>": chain, "**": clone}):
        embed = (HashEmbed(width, 5000, column=1)
                 | StaticVectors(vectors_name, width, column=5)
                 | HashEmbed(width // 2, 750, column=2)
                 | HashEmbed(width // 2, 750, column=3)
                 | HashEmbed(width // 2, 750, column=4)) >> LN(Maxout(width))

        sent2vec = (with_flatten(embed) >> Residual(
            prepare_self_attention(Affine(width * 3, width), nM=width, nH=4) >>
            MultiHeadedAttention() >> with_flatten(
                Maxout(width, width, pieces=3))) >> flatten_add_lengths >>
                    ParametricAttention(width, hard=False) >>
                    Pooling(mean_pool) >> Residual(LN(Maxout(width))))

        model = (foreach(sent2vec, drop_factor=2.0) >> Residual(
            prepare_self_attention(Affine(width * 3, width), nM=width, nH=4) >>
            MultiHeadedAttention() >> with_flatten(LN(Affine(width, width))))
                 >> flatten_add_lengths >> ParametricAttention(
                     width, hard=False) >> Pooling(mean_pool) >> Residual(
                         LN(Maxout(width)))**2 >> Softmax(nr_class))
    model.lsuv = False
    return model
Example #15
0
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
    # TODO proper error
    if "entity_width" not in cfg:
        raise ValueError("entity_width not found")
    if "context_width" not in cfg:
        raise ValueError("context_width not found")

    conv_depth = cfg.get("conv_depth", 2)
    cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
    pretrained_vectors = cfg.get(
        "pretrained_vectors")  # self.nlp.vocab.vectors.name
    context_width = cfg.get("context_width")
    entity_width = cfg.get("entity_width")

    with Model.define_operators({">>": chain, "**": clone}):
        model = (
            Affine(entity_width, entity_width + context_width + 1 + ner_types)
            >> Affine(1, entity_width, drop_factor=0.0) >> logistic)

        # context encoder
        tok2vec = (Tok2Vec(
            width=hidden_width,
            embed_size=embed_width,
            pretrained_vectors=pretrained_vectors,
            cnn_maxout_pieces=cnn_maxout_pieces,
            subword_features=True,
            conv_depth=conv_depth,
            bilstm_depth=0,
        ) >> flatten_add_lengths >> Pooling(mean_pool) >> Residual(
            zero_init(Maxout(hidden_width, hidden_width))) >> zero_init(
                Affine(context_width, hidden_width)))

        model.tok2vec = tok2vec

    model.tok2vec = tok2vec
    model.tok2vec.nO = context_width
    model.nO = 1
    return model
Example #16
0
def Tok2Vec(width, embed_size, **kwargs):
    # Circular imports :(
    from .._ml import CharacterEmbed
    from .._ml import PyTorchBiLSTM

    pretrained_vectors = kwargs.get("pretrained_vectors", None)
    cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
    subword_features = kwargs.get("subword_features", True)
    char_embed = kwargs.get("char_embed", False)
    if char_embed:
        subword_features = False
    conv_depth = kwargs.get("conv_depth", 4)
    bilstm_depth = kwargs.get("bilstm_depth", 0)
    cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
    with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
        norm = HashEmbed(width,
                         embed_size,
                         column=cols.index(NORM),
                         name="embed_norm",
                         seed=6)
        if subword_features:
            prefix = HashEmbed(width,
                               embed_size // 2,
                               column=cols.index(PREFIX),
                               name="embed_prefix",
                               seed=7)
            suffix = HashEmbed(width,
                               embed_size // 2,
                               column=cols.index(SUFFIX),
                               name="embed_suffix",
                               seed=8)
            shape = HashEmbed(width,
                              embed_size // 2,
                              column=cols.index(SHAPE),
                              name="embed_shape",
                              seed=9)
        else:
            prefix, suffix, shape = (None, None, None)
        if pretrained_vectors is not None:
            glove = StaticVectors(pretrained_vectors,
                                  width,
                                  column=cols.index(ID))

            if subword_features:
                embed = uniqued(
                    (glove | norm | prefix | suffix | shape) >> LN(
                        Maxout(width, width * 5, pieces=3)),
                    column=cols.index(ORTH),
                )
            elif char_embed:
                embed = concatenate_lists(
                    CharacterEmbed(nM=64, nC=8),
                    FeatureExtracter(cols) >> with_flatten(glove),
                )
                reduce_dimensions = LN(
                    Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces))
            else:
                embed = uniqued(
                    (glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
                    column=cols.index(ORTH),
                )
        elif subword_features:
            embed = uniqued(
                (norm | prefix | suffix | shape) >> LN(
                    Maxout(width, width * 4, pieces=3)),
                column=cols.index(ORTH),
            )
        elif char_embed:
            embed = concatenate_lists(
                CharacterEmbed(nM=64, nC=8),
                FeatureExtracter(cols) >> with_flatten(norm),
            )
            reduce_dimensions = LN(
                Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces))
        else:
            embed = norm

        convolution = Residual(
            ExtractWindow(
                nW=1) >> LN(Maxout(width, width *
                                   3, pieces=cnn_maxout_pieces)))
        if char_embed:
            tok2vec = embed >> with_flatten(
                reduce_dimensions >> convolution**conv_depth, pad=conv_depth)
        else:
            tok2vec = FeatureExtracter(cols) >> with_flatten(
                embed >> convolution**conv_depth, pad=conv_depth)

        if bilstm_depth >= 1:
            tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
        # Work around thinc API limitations :(. TODO: Revise in Thinc 7
        tok2vec.nO = width
        tok2vec.embed = embed
    return tok2vec
Example #17
0
def build_text_classifier(nr_class, width=64, **cfg):
    depth = cfg.get("depth", 2)
    nr_vector = cfg.get("nr_vector", 5000)
    pretrained_dims = cfg.get("pretrained_dims", 0)
    with Model.define_operators({
            ">>": chain,
            "+": add,
            "|": concatenate,
            "**": clone
    }):
        if cfg.get("low_data") and pretrained_dims:
            model = (SpacyVectors >> flatten_add_lengths >> with_getitem(
                0, Affine(width, pretrained_dims)) >>
                     ParametricAttention(width) >> Pooling(sum_pool) >>
                     Residual(ReLu(width, width))**2 >> zero_init(
                         Affine(nr_class, width, drop_factor=0.0)) >> logistic)
            return model

        lower = HashEmbed(width, nr_vector, column=1)
        prefix = HashEmbed(width // 2, nr_vector, column=2)
        suffix = HashEmbed(width // 2, nr_vector, column=3)
        shape = HashEmbed(width // 2, nr_vector, column=4)

        trained_vectors = FeatureExtracter(
            [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]) >> with_flatten(
                uniqued(
                    (lower | prefix | suffix | shape) >> LN(
                        Maxout(width, width + (width // 2) * 3)),
                    column=0,
                ))

        if pretrained_dims:
            static_vectors = SpacyVectors >> with_flatten(
                Affine(width, pretrained_dims))
            # TODO Make concatenate support lists
            vectors = concatenate_lists(trained_vectors, static_vectors)
            vectors_width = width * 2
        else:
            vectors = trained_vectors
            vectors_width = width
            static_vectors = None
        tok2vec = vectors >> with_flatten(
            LN(Maxout(width, vectors_width)) >> Residual(
                (ExtractWindow(nW=1) >> LN(Maxout(width, width * 3))))**depth,
            pad=depth,
        )
        cnn_model = (
            tok2vec >> flatten_add_lengths >> ParametricAttention(width) >>
            Pooling(sum_pool) >> Residual(zero_init(Maxout(width, width))) >>
            zero_init(Affine(nr_class, width, drop_factor=0.0)))

        linear_model = build_bow_text_classifier(nr_class,
                                                 ngram_size=cfg.get(
                                                     "ngram_size", 1),
                                                 exclusive_classes=False)
        if cfg.get("exclusive_classes"):
            output_layer = Softmax(nr_class, nr_class * 2)
        else:
            output_layer = (zero_init(
                Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic)
        model = (linear_model | cnn_model) >> output_layer
        model.tok2vec = chain(tok2vec, flatten)
    model.nO = nr_class
    model.lsuv = False
    return model
def main(dataset='quora',
         width=50,
         depth=2,
         min_batch_size=1,
         max_batch_size=512,
         dropout=0.2,
         dropout_decay=0.0,
         pooling="mean+max",
         nb_epoch=5,
         pieces=3,
         L2=0.0,
         use_gpu=False,
         out_loc=None,
         quiet=False,
         job_id=None,
         ws_api_url=None,
         rest_api_url=None):
    global CTX
    if job_id is not None:
        CTX = neptune.Context()
        width = CTX.params.width
        L2 = CTX.params.L2
        nb_epoch = CTX.params.nb_epoch
        depth = CTX.params.depth
        max_batch_size = CTX.params.max_batch_size
    cfg = dict(locals())

    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == 'mean+max':
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy('en')

    if use_gpu:
        Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    Model.lsuv = True
    #Model.ops = CupyOps()
    with Model.define_operators({
            '>>': chain,
            '**': clone,
            '|': concatenate,
            '+': add
    }):
        mwe_encode = ExtractWindow(nW=1) >> BN(
            Maxout(width, drop_factor=0.0, pieces=pieces))

        sent2vec = (  # List[spacy.token.Doc]{B}
            flatten_add_lengths  # : (ids{T}, lengths{B})
            >> with_getitem(
                0,
                #(StaticVectors('en', width)
                HashEmbed(width, 3000)
                #+ HashEmbed(width, 3000))
                #>> Residual(mwe_encode ** 2)
            )  # : word_ids{T}
            >> Pooling(mean_pool, max_pool)
            #>> Residual(BN(Maxout(width*2, pieces=pieces), nO=width*2)**2)
            >> Maxout(width * 2, pieces=pieces, drop_factor=0.0) >> logistic)
        model = Siamese(sent2vec, CauchySimilarity(width * 2))

    print("Read and parse data: %s" % dataset)
    if dataset == 'quora':
        train, dev = datasets.quora_questions()
    elif dataset == 'snli':
        train, dev = datasets.snli()
    elif dataset == 'stackxc':
        train, dev = datasets.stack_exchange()
    elif dataset in ('quora+snli', 'snli+quora'):
        train, dev = datasets.quora_questions()
        train2, dev2 = datasets.snli()
        train.extend(train2)
        dev.extend(dev2)
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    get_ids = get_word_ids(Model.ops)
    train_X, train_y = preprocess(model.ops, nlp, train, get_ids)
    dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids)

    with model.begin_training(train_X[:10000], train_y[:10000],
                              **cfg) as (trainer, optimizer):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate_logloss(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        n_iter = 0

        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            assert yh.shape == y.shape, (yh.shape, y.shape)

            assert (yh >= 0.).all(), yh
            train_acc = ((yh >= 0.5) == (y >= 0.5)).sum()
            loss = model.ops.xp.abs(yh - y).mean()
            epoch_train_acc += train_acc
            backprop(yh - y, optimizer)
            n_iter += 1

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print('Saving to', out_loc)
            with out_loc.open('wb') as file_:
                pickle.dump(model, file_, -1)
def FancyEmbed(width, rows, cols=(ORTH, SHAPE, PREFIX, SUFFIX)):
    tables = [HashEmbed(width, rows, column=i) for i in range(len(cols))]
    return chain(concatenate(*tables),
                 Maxout(width, width * len(tables), pieces=3))
Example #20
0
def main(
    width=100,
    depth=4,
    vector_length=64,
    min_batch_size=1,
    max_batch_size=32,
    learn_rate=0.001,
    momentum=0.9,
    dropout=0.5,
    dropout_decay=1e-4,
    nb_epoch=20,
    L2=1e-6,
):
    cfg = dict(locals())
    print(cfg)
    prefer_gpu()
    train_data, check_data, nr_tag = ancora_pos_tags()

    extracter = FeatureExtracter("es", attrs=[LOWER, SHAPE, PREFIX, SUFFIX])
    Model.lsuv = True
    with Model.define_operators({
            "**": clone,
            ">>": chain,
            "+": add,
            "|": concatenate
    }):
        lower_case = HashEmbed(width, 100, column=0)
        shape = HashEmbed(width // 2, 200, column=1)
        prefix = HashEmbed(width // 2, 100, column=2)
        suffix = HashEmbed(width // 2, 100, column=3)

        model = (with_flatten(
            (lower_case | shape | prefix | suffix) >> Maxout(width, pieces=3),
            pad=depth) >> with_pad_and_mask(
                MultiHeadedAttention(nM=width, nH=4)) >> with_flatten(
                    Softmax(nr_tag)))

    train_X, train_y = preprocess(model.ops, extracter, train_data, nr_tag)
    dev_X, dev_y = preprocess(model.ops, extracter, check_data, nr_tag)

    n_train = float(sum(len(x) for x in train_X))
    global epoch_train_acc
    with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (
            trainer,
            optimizer,
    ):
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        for X, y in trainer.iterate(train_X, train_y):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)

            gradient = [yh[i] - y[i] for i in range(len(yh))]

            backprop(gradient, optimizer)

            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
    with model.use_params(trainer.optimizer.averages):
        print(model.evaluate(dev_X, model.ops.flatten(dev_y)))
        with open("/tmp/model.pickle", "wb") as file_:
            pickle.dump(model, file_)
Example #21
0
def LayerNormalizedMaxout(config):
    width = config["width"]
    pieces = config["pieces"]
    layer = LayerNorm(Maxout(width, pieces=pieces))
    layer.nO = width
    return layer