parser.add_argument( "--eval-d", default=config.EVAL, help="directory to output") opt = parser.parse_args() try: os.makedirs(opt.ckpt_d) os.makedirs(opt.eval_d) except OSError: if not (os.path.exists(opt.ckpt_d) and os.path.exists(opt.eval_d)): raise OSError("Failed to make ckpt and eval directories") browserwriter = SummaryWriter(config.TFLOGDIR) cudnn.benchmark = True en_cuda = opt.cuda and torch.cuda.is_available() dataloader = thindidata.get_dataloader( thindidata.ThindiCifar10Data, opt.root, "train", opt.batch_size, num_workers=8) device = torch.device("cuda" if en_cuda else "cpu") if opt.ngpu == 1 and int(torch.cuda.device_count()) > 1: torch.cuda.set_device(1) ngpu = opt.ngpu netSD = SketchDiscriminator(ngpu).to(device) netPD = PhotoDiscriminator(ngpu).to(device) netSG = SKetchGenerator(ngpu).to(device) netPG = PhotoGenerator(ngpu).to(device) netSD.apply(utils.weight_init) netSG.apply(utils.weight_init) netPD.apply(utils.weight_init)
parser.add_argument("--ckpt-d", default=config.CKPT, help="directory to checkpoint") parser.add_argument("--eval-d", default=config.EVAL, help="directory to output") opt = parser.parse_args() try: os.makedirs(opt.ckpt_d) os.makedirs(opt.eval_d) except OSError: pass cudnn.benchmark = True en_cuda = opt.cuda and torch.cuda.is_available() dataloader = thindidata.get_dataloader(thindidata.Cifar10Data, opt.root, "all", opt.batch_size) device = torch.device("cuda" if en_cuda else "cpu") ngpu = opt.ngpu netD = arch.Discriminator(ngpu).to(device) netG = arch.Generator(ngpu).to(device) netD.apply(utils.weight_init) netG.apply(utils.weight_init) if opt.netG != "": netG.load_state_dict(torch.load(opt.netG)) if opt.netD != "": netD.load_state_dict(torch.load(opt.netD)) criterion = nn.MSELoss() fixed_noise = torch.randn(opt.batch_size, opt.nz, 1, 1, device=device) real_label = 1 fake_label = 0