import numpy as np from thor_client import ThorClient from franke import franke # Create experiment. tc = ThorClient() name = "Franke Function" # Create space. dims = [ {"name": "x", "dim_type": "linear", "low": 0., "high": 1.}, {"name": "y", "dim_type": "linear", "low": 0., "high": 1.} ] exp = tc.create_experiment(name, dims) # Main optimization loop. for i in range(30): # Request new recommendation. rec = exp.create_recommendation() x = rec.config # Evaluate new recommendation. val = franke(np.array([x["x"], x["y"]])) # Submit recommendation. rec.submit_recommendation(val)
from thor_client import ThorClient from svm_on_grid import svm_on_grid # Create experiment. tc = ThorClient() name = "Structured SVM" # Create space. dims = [ { "name": "C", "dim_type": "integer", "low": 0, "high": 24 }, { "name": "alpha", "dim_type": "integer", "low": 0, "high": 13 }, { "name": "epsilon", "dim_type": "integer", "low": 0, "high": 3 }, ] exp = tc.create_experiment(name, dims, overwrite=True) # Main optimization loop. for i in range(100):
with tf.Session() as sess: # Initialize TensorFlow. sess.run(tf.global_variables_initializer()) # Perform learning iterations. for _ in range(n_iters): if _ % n_prog == 0: print("Progress: {} / {}.".format(_ + 1, n_iters)) batch_xs, batch_ys = mnist.train.next_batch(n_batch) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # At the end of the learning sequence, return the accuracy on the test # set of images. return sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}) # Create experiment. tc = ThorClient() dims = [ {"name": "learning rate", "dim_type": "logarithmic", "low": 1e-8, "high": 1.}, {"name": "regularizer", "dim_type": "linear", "low": 0., "high": 1.}, {"name": "batch size", "dim_type": "integer", "low": 20, "high": 2000}, {"name": "epochs", "dim_type": "integer", "low": 5, "high": 20000} ] exp = tc.create_experiment("MNIST Logistic Regression", dims, overwrite=True) # Main optimization loop. for i in range(100): # Request new recommendation. rec = exp.create_recommendation() c = rec.config # Evaluate new recommendation. val = mnist_logistic(