def TrainButton_Clicked(self):

        print("Training Started...")
        if (self.removeNoiseChecked.isChecked()):
            self.removeNoiseFlag = 1
        elif (self.removeNoiseUnchecked.isChecked()):
            self.removeNoiseFlag = 0
        #TODO: change SampleStart to a more meaningful name, ie: sampleStartTextBox
        self.SignalStart = self.SampleStart.toPlainText()
        self.SignalEnd = self.SampleEnd.toPlainText()
        self.selectedFeatureExtractionMethod = self.featureSelectionMethodBox.currentText(
        )
        self.selectedPreprocessingMethod = self.preprocessingBox.currentText()
        self.FeatureEnhancementSelectedMethod = self.FeatureEnhancementMethod.currentText(
        )
        self.classifierSelected = self.ClassifierBox.currentText()

        #calling the octave thread
        self.readThread = readDataThread(self.trainFilePath, None, self.removeNoiseFlag, self.SignalStart, self.SignalEnd, \
             self.selectedFeatureExtractionMethod, self.selectedPreprocessingMethod, self.FeatureEnhancementSelectedMethod, self.classifierSelected, \
             True, verbose=True)

        #done signals calling
        #enhancment is done
        QtCore.QObject.connect(
            self.readThread,
            QtCore.SIGNAL(("dataCleaningSignal(PyQt_PyObject)")),
            self.cleanData)
        #feature exctraction is done
        QtCore.QObject.connect(
            self.readThread,
            QtCore.SIGNAL(("featureSelectionSignal(PyQt_PyObject)")),
            self.selectFeatures)
        #feature enhancement is done
        QtCore.QObject.connect(
            self.readThread,
            QtCore.SIGNAL(("featureEnhancementSignal(PyQt_PyObject)")),
            self.enhanceFeatures)
        #classification is done
        QtCore.QObject.connect(
            self.readThread,
            QtCore.SIGNAL(("dataClassificationSignal(PyQt_PyObject)")),
            self.classifyData)

        self.readThread.start()
    def TestButton_Clicked(self):
        #check all files flag then offset else read from new file
        selectedData = {}
        self.setSameFileFlag(self.sameFileFlag.isChecked())

        if (self.sameFile):

            selectedData["All"] = False
            selectedData["off0"] = False
            selectedData["off1"] = False
            selectedData["off2"] = False
            selectedData["off3"] = False
            selectedData["off4"] = False

            if (self.allData2080.isChecked()):
                selectedData["All"] = True
            elif (self.offset_0_2080.isChecked()):
                selectedData["off0"] = True
            elif (self.offset_1_2080.isChecked()):
                selectedData["off1"] = True
            elif (self.offset_2_2080.isChecked()):
                selectedData["off2"] = True
            elif (self.offset_3_2080.isChecked()):
                selectedData["off3"] = True
            elif (self.offset_4_2080.isChecked()):
                selectedData["off4"] = True

        else:
            print("Detection from a different file than training")

        localArgs = {}
        localArgs["selectedData"] = selectedData

        #TODO: fix this mess
        if self.preDetectCheck(self.trainFilePath, self.detectFilePath, self.removeNoiseFlag, self.SignalStart, self.SignalEnd, \
                 self.selectedPreprocessingMethod, self.FeatureEnhancementSelectedMethod, self.selectedFeatureExtractionMethod, self.classifierSelected, \
                 self.sameFile, self.allData2080, self.offset_0_2080, self.offset_1_2080, self.offset_2_2080, self.offset_3_2080, self.offset_4_2080, \
                 True, True, localArgs):
            print "One/Some of the necessary checks failed! :'("
            return

        self.readThread1 = readDataThread(self.trainFilePath, self.detectFilePath, self.removeNoiseFlag, self.SignalStart,self.SignalEnd, \
              self.selectedFeatureExtractionMethod, self.selectedPreprocessingMethod, self.FeatureEnhancementSelectedMethod, self.classifierSelected, \
              False, selectedData, self.sameFile, True)
        self.readThread1.start()
Example #3
0
    def MultiFileBulkDetect(filesDict, noiseDict, featDict, preprocDict, enhanceDict, classDict, \
                   sampleStart, sampleEnd, selectedData, sameFile, updateGSpread=False):

        k = 0
        threadList = []
        detectFileRowIndexDict = {}
        detectFileAccListDict = {}

        if (updateGSpread == True):
            ##Connect to google spreadsheet

            #gc = gspread.login(GSC.email, GSC.password)
            json_key = json.load(
                open('/tmp/mozilla_root0/BCIWheelChair2018-eef792bad9a5.json'))
            scope = ['https://spreadsheets.google.com/feeds']

            credentials = SignedJwtAssertionCredentials(
                json_key['client_email'], json_key['private_key'].encode(),
                scope)

            gc = gspread.authorize(credentials)

            sh = gc.open(GSC.title)
            worksheet = sh.worksheet(GSC.sheet_title)

        print "\r\nDebug"
        print "------"
        print filesDict
        print filesDict.items()
        print "\r\n"

        for tfItem, tfValue in filesDict.items():
            ## given a train file, and dict methods, detect files, loop on each and do magic!

            print "Training File: " + tfItem.split("/")[-1]
            print "************"

            # reset to the first column
            i = 0

            tfDesc = TFC.getDescription(tfItem)
            tfName = TFC.getName(tfItem)

            if (updateGSpread == True):
                rowIndex = GSPU.getEmptyRowIndex(range(1, 10))
                j = 0
                worksheet.update_cell(rowIndex, 3, tfDesc)
                worksheet.update_cell(rowIndex, 2, tfName)

                accumelatedAcc = []

            print "Creating Detection Paths:"
            print "-----------------------"

            for noiseItem, noiseValue in noiseDict.items():
                #TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
                wrappingNoiseValue = False
                if (noiseItem == "Remove") & (noiseValue & True):
                    wrappingNoiseValue = True
                elif (noiseItem == "Raw") & (noiseValue & True):
                    wrappingNoiseValue = False

                for preprocItem, preprocValue in preprocDict.items():
                    #get feature dictionary
                    for featItem, featValue in featDict.items():
                        for enhanceItem, enhanceValue in enhanceDict.items():
                            for classItem, classValue in classDict.items():
                                # TODO: when we support separate training from the detection, do the training here and detect for each file by itself
                                # that would speed the process too much if we've multiple detection sessions for the same training session

                                if (BulkUtilities.CheckTrainingFile(
                                        tfItem, tfValue, False) == False):
                                    continue

                                #df are stored as lists
                                for dfItem in tfValue:
                                    print "Detection File: " + dfItem.split(
                                        "/")[-1]
                                    print "************"

                                    # use rowIndex
                                    if (updateGSpread == True):
                                        if dfItem + tfItem in detectFileRowIndexDict:
                                            # a recurrent detection file
                                            print "---- test ----"
                                            print "---- recurrent ----"
                                            print dfItem
                                            print tfItem
                                            print rowIndex
                                            print "---- test ----"
                                            rowIndex = detectFileRowIndexDict[
                                                dfItem + tfItem]
                                        else:
                                            # a new detection file ^_^
                                            rowIndex = GSPU.getEmptyRowIndex(
                                                range(1, 10))
                                            detectFileRowIndexDict[
                                                dfItem + tfItem] = rowIndex

                                            dfDesc = TFC.getDescription(dfItem)
                                            dfName = TFC.getName(dfItem)

                                            worksheet.update_cell(
                                                rowIndex, 8, dfDesc)
                                            worksheet.update_cell(
                                                rowIndex, 7, dfName)

                                            print "---- test ----"
                                            print "---- first timer ----"
                                            print dfItem
                                            print tfItem
                                            print rowIndex
                                            print "---- test ----"

                                    Path = "Path " + str(
                                        i
                                    ) + ": " + noiseItem + ", " + featItem + ", " + preprocItem + ", " + enhanceItem + ", " + classItem
                                    print Path
                                    print classItem
                                    print classValue

                                    #note the program behaves strangely when threads aren't closed :|
                                    # how: for changing second value ->> readDataThread won't "always" recieve the right dfItem, but rather a cached copy of it
                                    # may be the reason we didn't wait for the thread after getAcc!
                                    thread = readDataThread(tfItem, dfItem, wrappingNoiseValue, sampleStart, sampleEnd, \
                                                            featValue, preprocValue, enhanceValue, classValue, \
                                                            False, selectedData, sameFile, True)
                                    thread.start()
                                    thread.wait()

                                    if (updateGSpread == True):
                                        Acc = thread.getAcc()
                                        thread.wait()

                                        if dfItem + tfItem in detectFileAccListDict:
                                            detectFileAccListDict[
                                                dfItem + tfItem].append(Acc)
                                        else:
                                            detectFileAccListDict[dfItem +
                                                                  tfItem] = []
                                            detectFileAccListDict[
                                                dfItem + tfItem].append(Acc)

                                        #Write the path description and it's accuracy
                                        worksheet.update_cell(
                                            rowIndex + 1, 9 + j, Path)
                                        worksheet.update_cell(
                                            rowIndex + 1, 10 + j, Acc)

                                        #Array to hold accurcies of all paths
                                        #accumelatedAcc.append(Acc)

                                    thread.exit()

                                if (updateGSpread):
                                    # move to the next 2 columns once finished all the detection files
                                    j += 2

                                # get into the next column
                                i += 1

            # for each Training File
            if ((updateGSpread == True) & (i > 0)):
                #Get the Min, Max and avrg accuracy then write them
                for tfItem, tfValue in filesDict.items():
                    for dfItem in tfValue:
                        accumelatedAcc = detectFileAccListDict[dfItem + tfItem]
                        rowIndex = detectFileRowIndexDict[dfItem + tfItem]

                        mySorted = sorted(accumelatedAcc)
                        worksheet.update_cell(rowIndex, 4, mySorted[0])
                        print "i is " + str(i)
                        print mySorted
                        print detectFileAccListDict
                        print detectFileAccListDict.items
                        print "Rania is here"

                        worksheet.update_cell(rowIndex, 5, mySorted[i - 1])
                        temp = 0
                        for k in range(0, i):
                            temp = temp + accumelatedAcc[k]
                        avrg = temp / len(accumelatedAcc)
                        worksheet.update_cell(rowIndex, 6, avrg)

        print "-----------------------"
        print "Finished bulk detection"
Example #4
0
    def BulkEightyTweenty(
        filesDict,
        noiseDict,
        featDict,
        preprocDict,
        enhanceDict,
        classDict,
        sampleStart,
        sampleEnd,
        selectedData,
        updateGSpread=False,
    ):

        threadList = []
        offsetDict = {}

        # TODO: change to enums
        offsetDict["All"] = False
        offsetDict["off0"] = False
        offsetDict["off1"] = False
        offsetDict["off2"] = False
        offsetDict["off3"] = False
        offsetDict["off4"] = False

        if updateGSpread == True:
            ##Connect to google spreadsheet
            gc = gspread.login(GSC.email, GSC.password)
            sh = gc.open(GSC.title)
            worksheet = sh.worksheet(GSC.sheet_title)

        for offsetItem, offsetValue in offsetDict.items():
            print "Detection Offset: " + str(offsetItem)
            print "************"

            i = 0

            if updateGSpread == True:
                rowIndex = GSPU.getEmptyRowIndex(range(1, 10))

            for tfItem, tfValue in filesDict.items():
                ## given a train file, and dict methods, detect files, loop on each and do magic!

                print "Training File: " + tfItem
                print "************"

                desc = str(TrainingFileClass.getDescription(tfItem)) + " " + str(offsetItem)
                name = TrainingFileClass.getName(tfItem)

                if updateGSpread == True:
                    j = 0
                    worksheet.update_cell(rowIndex, 3, desc)
                    worksheet.update_cell(rowIndex, 2, name)

                    accumelatedAcc = []

                print "Creating Detection Paths:"
                print "-----------------------"

                for noiseItem, noiseValue in noiseDict.items():
                    # TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
                    wrappingNoiseValue = False
                    if (noiseItem == "Remove") & (noiseValue & True):
                        wrappingNoiseValue = True
                    elif (noiseItem == "Raw") & (noiseValue & True):
                        wrappingNoiseValue = False

                    for preprocItem, preprocValue in preprocDict.items():
                        # get feature dictionary
                        for featItem, featValue in featDict.items():
                            for enhanceItem, enhanceValue in enhanceDict.items():
                                for classItem, classValue in classDict.items():
                                    # if we can separate the training from the detection, do the training here and detect for each file by itself
                                    # that would speed the process too much if we've multiple detection sessions for the same training session

                                    offsetDict = CrossValidationUtilities.SelectSingleDataOffset(offsetDict, offsetItem)

                                    Path = (
                                        "Path "
                                        + str(i)
                                        + ": "
                                        + noiseItem
                                        + ", "
                                        + featItem
                                        + ", "
                                        + preprocItem
                                        + ", "
                                        + enhanceItem
                                        + ", "
                                        + classItem
                                        + ", "
                                        + str(offsetItem)
                                    )
                                    print Path

                                    thread = readDataThread(
                                        tfItem,
                                        tfItem,
                                        wrappingNoiseValue,
                                        sampleStart,
                                        sampleEnd,
                                        featValue,
                                        preprocValue,
                                        enhanceValue,
                                        classValue,
                                        False,
                                        offsetDict,
                                        True,
                                        True,
                                    )
                                    thread.start()
                                    thread.wait()

                                    if updateGSpread == True:
                                        Acc = thread.getAcc()
                                        thread.wait()
                                        # Write the path description and it's accuracy
                                        worksheet.update_cell(rowIndex, 7 + j, Path)
                                        worksheet.update_cell(rowIndex, 8 + j, Acc)

                                        # Array to hold accurcies of all paths
                                        accumelatedAcc.append(Acc)
                                        j += 2

                                    thread.exit()
                                    i += 1

        if (updateGSpread == True) & (i > 0):
            # Get the Min, Max and avrg accuracy then write them
            mySorted = sorted(accumelatedAcc)
            worksheet.update_cell(rowIndex, 4, mySorted[0])
            worksheet.update_cell(rowIndex, 5, mySorted[i - 1])
            temp = 0
            for k in range(0, i):
                temp = temp + accumelatedAcc[k]
            avrg = temp / len(accumelatedAcc)
            worksheet.update_cell(rowIndex, 6, avrg)

        print "-----------------------"
        print "Finished bulk detection"
Example #5
0
    def MultiFileBulkDetect(filesDict, noiseDict, featDict, preprocDict, enhanceDict, classDict, \
                   sampleStart, sampleEnd, selectedData, sameFile, updateGSpread=False):

        k = 0
        threadList = []
        detectFileRowIndexDict = {}
        detectFileAccListDict = {}

        if (updateGSpread == True):
            ##Connect to google spreadsheet 
            gc = gspread.login(GSC.email, GSC.password)
            sh = gc.open(GSC.title) 
            worksheet = sh.worksheet(GSC.sheet_title)

        print "\r\nDebug"
        print "------"
        print filesDict
        print filesDict.items()
        print "\r\n"

        for tfItem, tfValue in filesDict.items():
            ## given a train file, and dict methods, detect files, loop on each and do magic!

            print "Training File: " + tfItem
            print "************"

            # reset to the first column
            i = 0

            tfDesc = TFC.getDescription(tfItem)
            tfName = TFC.getName(tfItem)

            if (updateGSpread == True):
                rowIndex = GSPU.getEmptyRowIndex(range(1, 10))
                j = 0
                worksheet.update_cell(rowIndex, 3, tfDesc)
                worksheet.update_cell(rowIndex, 2, tfName)
            
                accumelatedAcc = []

            print "Creating Detection Paths:"
            print "-----------------------"

            for noiseItem, noiseValue in noiseDict.items():
                #TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
                wrappingNoiseValue = False
                if (noiseItem == "Remove") & (noiseValue & True):
                    wrappingNoiseValue = True
                elif (noiseItem == "Raw") & (noiseValue & True):
                    wrappingNoiseValue = False

                for preprocItem, preprocValue in preprocDict.items():
                    #get feature dictionary 
                    for featItem, featValue in featDict.items():
                        for enhanceItem, enhanceValue in enhanceDict.items():
                            for classItem, classValue in classDict.items():
                                # TODO: when we support separate training from the detection, do the training here and detect for each file by itself
                                # that would speed the process too much if we've multiple detection sessions for the same training session

                                if (BulkUtilities.CheckTrainingFile(tfItem, tfValue, False) == False):
                                    continue
                                
                                #df are stored as lists
                                for dfItem in tfValue:
                                    print "Detection File: " + dfItem
                                    print "************"

                                    # use rowIndex
                                    if (updateGSpread == True):
                                        if dfItem + tfItem in detectFileRowIndexDict:
                                            # a recurrent detection file
                                            print "---- test ----"
                                            print "---- recurrent ----"
                                            print dfItem
                                            print tfItem
                                            print rowIndex
                                            print "---- test ----"
                                            rowIndex = detectFileRowIndexDict[dfItem + tfItem]
                                        else:
                                            # a new detection file ^_^
                                            rowIndex = GSPU.getEmptyRowIndex(range(1, 10))
                                            detectFileRowIndexDict[dfItem + tfItem] = rowIndex

                                            dfDesc = TFC.getDescription(dfItem)
                                            dfName = TFC.getName(dfItem)

                                            worksheet.update_cell(rowIndex, 8, dfDesc)
                                            worksheet.update_cell(rowIndex, 7, dfName)
            
                                            print "---- test ----"
                                            print "---- first timer ----"
                                            print dfItem
                                            print tfItem
                                            print rowIndex
                                            print "---- test ----"

                                    Path = "Path " + str(i) + ": " + noiseItem + ", " + featItem + ", " + preprocItem + ", " + enhanceItem + ", " + classItem
                                    print Path
                                    print classItem
                                    print classValue

                                    #note the program behaves strangely when threads aren't closed :|
                                    # how: for changing second value ->> readDataThread won't "always" recieve the right dfItem, but rather a cached copy of it
                                    # may be the reason we didn't wait for the thread after getAcc!
                                    thread = readDataThread(tfItem, dfItem, wrappingNoiseValue, sampleStart, sampleEnd, \
                                                            featValue, preprocValue, enhanceValue, classValue, \
                                                            False, selectedData, sameFile, True)
                                    thread.start()
                                    thread.wait()

                                    if (updateGSpread == True):
                                        Acc = thread.getAcc()
                                        thread.wait()

                                        if dfItem + tfItem in detectFileAccListDict:
                                            detectFileAccListDict[dfItem + tfItem].append(Acc)
                                        else:
                                            detectFileAccListDict[dfItem + tfItem] = []
                                            detectFileAccListDict[dfItem + tfItem].append(Acc)

                                        #Write the path description and it's accuracy 
                                        worksheet.update_cell(rowIndex + 1, 9 + j , Path)
                                        worksheet.update_cell(rowIndex + 1, 10 + j , Acc)

                                        #Array to hold accurcies of all paths
                                        #accumelatedAcc.append(Acc)

                                    thread.exit()

                                if (updateGSpread):
                                    # move to the next 2 columns once finished all the detection files
                                    j += 2


                                # get into the next column
                                i += 1

            # for each Training File
            if ((updateGSpread == True) & (i > 0)):
                #Get the Min, Max and avrg accuracy then write them
                for tfItem, tfValue in filesDict.items():
                    for dfItem in tfValue:
                        accumelatedAcc = detectFileAccListDict[dfItem + tfItem]
                        rowIndex = detectFileRowIndexDict[dfItem + tfItem]
        
                        mySorted = sorted(accumelatedAcc)
                        worksheet.update_cell(rowIndex, 4 , mySorted[0])
                        print "i is " + str(i)
                        print mySorted
                        print detectFileAccListDict
                        print detectFileAccListDict.items
                        print "Rania is here"
                        
                        worksheet.update_cell(rowIndex, 5 , mySorted[i-1])
                        temp = 0
                        for k in range(0, i):
                            temp = temp + accumelatedAcc[k]
                        avrg = temp / len(accumelatedAcc)
                        worksheet.update_cell(rowIndex, 6 , avrg)

        print "-----------------------"
        print "Finished bulk detection"
Example #6
0
    def SingleFileBulkDetect(self):
        #TODO: add assertions -> there must be at least a single selected checkbox for each column
        #TODO: add time estimation, even static ones would be great for now! calc a trial p
        noiseDict = self.DictOfNoiseCB()
        featDict = self.DictOfFeaturesCB()
        preprocDict = self.DictOfPreprocessingCB()
        enhanceDict = self.DictOfEnhancementCB()
        classDict = self.DictOfClassifiersCB()
	updateGDocs = self.CBGetter(self.updateGDocsCB)
	
	##Connect to google spreadsheet 
	#gc = gspread.login( GSC.email , GSC.password)
	if (updateGDocs == True):
		json_key = json.load(open('/tmp/mozilla_root0/BCIWheelChair2018-eef792bad9a5.json'))
		scope = ['https://spreadsheets.google.com/feeds']
		credentials = SignedJwtAssertionCredentials(json_key['client_email'], json_key['private_key'].encode(), scope)
		gc = gspread.authorize(credentials)
		sh = gc.open(GSC.title)
		worksheet = sh.worksheet(GSC.sheet_title)
		self.rowIndex = GSPU.getEmptyRowIndex(range(1, 10))
		worksheet.update_cell(self.rowIndex, 3, desc)
		worksheet.update_cell(self.rowIndex, 2, name)

        self.threadList = []
        i = 0
	j = 0
	print "Traing File: " + self.trainPath.split("/")[-1]
	print "************"

	print "Detection File: " + self.detectPath.split("/")[-1]
	print "************"
	
	desc = TrainingFileClass.getDescription(self.trainPath)
	name = TrainingFileClass.getName(self.trainPath)
	
	
	
	self.accumelatedAcc = []
        print "Creating Detection Paths:"
        print "-------------------------"

        for noiseItem,noiseValue in noiseDict.items():
	    #TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
	    wrappingNoiseValue = False
	    if (noiseItem == "Remove") & (noiseValue & True):
		wrappingNoiseValue = True
	    elif (noiseItem == "Raw") & (noiseValue & True):
		wrappingNoiseValue = False

            for preprocItem, preprocValue in preprocDict.items():
		#get feature dictionary 
		for featItem, featValue in featDict.items():
                    for enhanceItem, enhanceValue in enhanceDict.items():
                        for classItem, classValue in classDict.items():

                            Path = "Path " + str(i) + ": " +noiseItem + ", " + featItem + ", " + preprocItem + ", " + enhanceItem + ", " + classItem
			    print Path
			    print classValue
                            thread = readDataThread(self.trainPath, self.detectPath, wrappingNoiseValue, self.sampleStart, self.sampleEnd, \
                                                    featValue, preprocValue, enhanceValue, classValue, \
						    False, self.selectedData, self.sameFile,True)
                            self.threadList.append(thread)
                            self.threadList[i].start()
                            self.threadList[i].wait()
			    Acc = self.threadList[i].getAcc()
			    #Write the path description and it's accuracy 
			    if (updateGDocs == True):
				    worksheet.update_cell(self.rowIndex, 7+j , Path)
				    worksheet.update_cell(self.rowIndex, 8+j , Acc)

			    #Array to hold accurcies of all paths
			    self.accumelatedAcc.append(Acc)
			    
                            i += 1
			    j += 2
			    
	#Get the Min, Max and avrg accuracy then write them 
	self.sorted = sorted(self.accumelatedAcc)
	if (updateGDocs == True):
		worksheet.update_cell(self.rowIndex, 4 , self.sorted[0])
		worksheet.update_cell(self.rowIndex, 5 , self.sorted[i-1])
	temp = 0
	for o in range(0, i):
	    temp = temp + self.accumelatedAcc[o]
	avrg = temp / len(self.accumelatedAcc)
	if (updateGDocs == True):
		worksheet.update_cell(self.rowIndex, 6 , avrg)
	
        print "-----------------------"
        print "Finished bulk detection"
    def SingleFileBulkDetect(self):
        #TODO: add assertions -> there must be at least a single selected checkbox for each column
        #TODO: add time estimation, even static ones would be great for now! calc a trial p
        noiseDict = self.DictOfNoiseCB()
        featDict = self.DictOfFeaturesCB()
        preprocDict = self.DictOfPreprocessingCB()
        enhanceDict = self.DictOfEnhancementCB()
        classDict = self.DictOfClassifiersCB()
	
	##Connect to google spreadsheet 
	gc = gspread.login( GSC.email , GSC.password)
	sh = gc.open(GSC.title)
	worksheet = sh.worksheet(GSC.sheet_title)
	self.rowIndex = GSPU.getEmptyRowIndex(range(1, 10))

        self.threadList = []
        i = 0
	j = 0
	print "Traing File: " + self.trainPath
	print "************"

	print "Detection File: " + self.detectPath
	print "************"
	
	desc = TrainingFileClass.getDescription(self.trainPath)
	name = TrainingFileClass.getName(self.trainPath)
	
	worksheet.update_cell(self.rowIndex, 3, desc)
	worksheet.update_cell(self.rowIndex, 2, name)
	
	self.accumelatedAcc = []
        print "Creating Detection Paths:"
        print "-------------------------"

        for noiseItem,noiseValue in noiseDict.items():
	    #TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
	    wrappingNoiseValue = False
	    if (noiseItem == "Remove") & (noiseValue & True):
		wrappingNoiseValue = True
	    elif (noiseItem == "Raw") & (noiseValue & True):
		wrappingNoiseValue = False

            for preprocItem, preprocValue in preprocDict.items():
		#get feature dictionary 
		for featItem, featValue in featDict.items():
                    for enhanceItem, enhanceValue in enhanceDict.items():
                        for classItem, classValue in classDict.items():

                            Path = "Path " + str(i) + ": " +noiseItem + ", " + featItem + ", " + preprocItem + ", " + enhanceItem + ", " + classItem
			    print Path
			    print classValue
                            thread = readDataThread(self.trainPath, self.detectPath, wrappingNoiseValue, self.sampleStart, self.sampleEnd, \
                                                    featValue, preprocValue, enhanceValue, classValue, \
						    False, self.selectedData, self.sameFile,True)
                            self.threadList.append(thread)
                            self.threadList[i].start()
                            self.threadList[i].wait()
			    Acc = self.threadList[i].getAcc()
			    #Write the path description and it's accuracy 
			    worksheet.update_cell(self.rowIndex, 7+j , Path)
			    worksheet.update_cell(self.rowIndex, 8+j , Acc)

			    #Array to hold accurcies of all paths
			    self.accumelatedAcc.append(Acc)
			    
                            i += 1
			    j += 2
			    
	#Get the Min, Max and avrg accuracy then write them 
	self.sorted = sorted(self.accumelatedAcc)
	worksheet.update_cell(self.rowIndex, 4 , self.sorted[0])
	worksheet.update_cell(self.rowIndex, 5 , self.sorted[i-1])
	temp = 0
	for o in range(0, i):
	    temp = temp + self.accumelatedAcc[o]
	avrg = temp / len(self.accumelatedAcc)
	worksheet.update_cell(self.rowIndex, 6 , avrg)
	
        print "-----------------------"
        print "Finished bulk detection"
Example #8
0
    def BulkEightyTweenty(filesDict, noiseDict, featDict, preprocDict, enhanceDict, classDict, \
                          sampleStart, sampleEnd, selectedData, updateGSpread=False):

        threadList = []
        offsetDict = {}

        #TODO: change to enums
        offsetDict["All"] = False
        offsetDict["off0"] = False
        offsetDict["off1"] = False
        offsetDict["off2"] = False
        offsetDict["off3"] = False
        offsetDict["off4"] = False

        if (updateGSpread == True):
            ##Connect to google spreadsheet
            gc = gspread.login(GSC.email, GSC.password)
            sh = gc.open(GSC.title)
            worksheet = sh.worksheet(GSC.sheet_title)

        for offsetItem, offsetValue in offsetDict.items():
            print "Detection Offset: " + str(offsetItem)
            print "************"

            i = 0

            if (updateGSpread == True):
                rowIndex = GSPU.getEmptyRowIndex(range(1, 10))

            for tfItem, tfValue in filesDict.items():
                ## given a train file, and dict methods, detect files, loop on each and do magic!

                print "Training File: " + tfItem
                print "************"

                desc = str(TrainingFileClass.getDescription(
                    tfItem)) + " " + str(offsetItem)
                name = TrainingFileClass.getName(tfItem)

                if (updateGSpread == True):
                    j = 0
                    worksheet.update_cell(rowIndex, 3, desc)
                    worksheet.update_cell(rowIndex, 2, name)

                    accumelatedAcc = []

                print "Creating Detection Paths:"
                print "-----------------------"

                for noiseItem, noiseValue in noiseDict.items():
                    #TODO: remove this hack! a hack till we propagate the noise removal to be an unified variable(enum or struct) throughout all the code!
                    wrappingNoiseValue = False
                    if (noiseItem == "Remove") & (noiseValue & True):
                        wrappingNoiseValue = True
                    elif (noiseItem == "Raw") & (noiseValue & True):
                        wrappingNoiseValue = False

                    for preprocItem, preprocValue in preprocDict.items():
                        #get feature dictionary
                        for featItem, featValue in featDict.items():
                            for enhanceItem, enhanceValue in enhanceDict.items(
                            ):
                                for classItem, classValue in classDict.items():
                                    # if we can separate the training from the detection, do the training here and detect for each file by itself
                                    # that would speed the process too much if we've multiple detection sessions for the same training session

                                    offsetDict = CrossValidationUtilities.SelectSingleDataOffset(
                                        offsetDict, offsetItem)

                                    Path = "Path " + str(
                                        i
                                    ) + ": " + noiseItem + ", " + featItem + ", " + preprocItem + ", " + enhanceItem + ", " + classItem + ", " + str(
                                        offsetItem)
                                    print Path

                                    thread = readDataThread(tfItem, tfItem, wrappingNoiseValue, sampleStart, sampleEnd, \
                                                            featValue, preprocValue, enhanceValue, classValue, \
                                                            False, offsetDict, True, True)
                                    thread.start()
                                    thread.wait()

                                    if (updateGSpread == True):
                                        Acc = thread.getAcc()
                                        thread.wait()
                                        #Write the path description and it's accuracy
                                        worksheet.update_cell(
                                            rowIndex, 7 + j, Path)
                                        worksheet.update_cell(
                                            rowIndex, 8 + j, Acc)

                                        #Array to hold accurcies of all paths
                                        accumelatedAcc.append(Acc)
                                        j += 2

                                    thread.exit()
                                    i += 1

        if ((updateGSpread == True) & (i > 0)):
            #Get the Min, Max and avrg accuracy then write them
            mySorted = sorted(accumelatedAcc)
            worksheet.update_cell(rowIndex, 4, mySorted[0])
            worksheet.update_cell(rowIndex, 5, mySorted[i - 1])
            temp = 0
            for k in range(0, i):
                temp = temp + accumelatedAcc[k]
            avrg = temp / len(accumelatedAcc)
            worksheet.update_cell(rowIndex, 6, avrg)

        print "-----------------------"
        print "Finished bulk detection"