def test_kmeans_k2(self): """ Test k=2 also with more points""" data, centerstrue = DataSets.make(self.sc, "kmeans", k=2, nrecords=50, npartitions=5, seed=42, returnparams=True) centerstrue = KMeansModel(centerstrue) model = KMeans(k=2, maxIterations=20).fit(data) labels = array(model.predict(data).values().collect()) labelstrue = array(centerstrue.predict(data).values().collect()) assert(array_equal(labels, labelstrue) or array_equal(labels, 1 - labelstrue))
def test_kmeans_k2(self): """ Test k=2 also with more points""" data, centerstrue = DataSets.make(self.sc, "kmeans", k=2, nrecords=50, npartitions=5, seed=42, returnparams=True) centerstrue = KMeansModel(centerstrue) model = KMeans(k=2, maxiter=20, tol=0.001, init="sample").train(data) labels = array(model.predict(data).values().collect()) labelstrue = array(centerstrue.predict(data).values().collect()) print(labels) print(labelstrue) assert(array_equal(labels, labelstrue) or array_equal(labels, 1 - labelstrue))
def test_kmeans_k2(self): """ Test k=2 also with more points""" data, centerstrue = DataSets.make( self.sc, "kmeans", k=2, nrecords=50, npartitions=5, seed=42, returnparams=True ) centerstrue = KMeansModel(centerstrue) model = KMeans(k=2, maxiter=20, tol=0.001, init="sample").train(data) labels = array(model.predict(data).values().collect()) labelstrue = array(centerstrue.predict(data).values().collect()) print(labels) print(labelstrue) assert array_equal(labels, labelstrue) or array_equal(labels, 1 - labelstrue)
def test_KMeans_k2(self): """ Test k=2 also with more points""" data, centersTrue = DataSets.make(self.sc, "kmeans", k=2, nrecords=50, npartitions=5, seed=42, returnParams=True) centersTrue = KMeansModel(centersTrue) model = KMeans(k=2, maxIterations=20).fit(data) labels = array(model.predict(data).values().collect()) labelsTrue = array(centersTrue.predict(data).values().collect()) assert (array_equal(labels, labelsTrue) or array_equal(labels, 1 - labelsTrue))