Example #1
0
def ica(data, k, c):

    n = data.count()

    # reduce dimensionality
    comps, latent, scores = svd4(data, k, 0)

    # whiten data
    whtMat = real(dot(inv(diag(sqrt(latent))), comps))
    unwhtMat = real(dot(transpose(comps), diag(sqrt(latent))))
    wht = data.map(lambda x: dot(whtMat, x))

    # do multiple independent component extraction
    B = orth(random.randn(k, c))
    Bold = zeros((k, c))
    iterNum = 0
    minAbsCos = 0
    tol = 0.000001
    iterMax = 1000
    errVec = zeros(iterMax)

    while (iterNum < iterMax) & ((1 - minAbsCos) > tol):
        iterNum += 1
        # update rule for pow3 nonlinearity (TODO: add other nonlins)
        B = wht.map(lambda x: outer(x, dot(x, B) ** 3)).sum() / n - 3 * B
        # orthognalize
        B = dot(B, real(sqrtm(inv(dot(transpose(B), B)))))
        # evaluate error
        minAbsCos = min(abs(diag(dot(transpose(B), Bold))))
        # store results
        Bold = B
        errVec[iterNum - 1] = 1 - minAbsCos

    # get unmixing matrix
    W = dot(transpose(B), whtMat)

    # get components
    sigs = data.map(lambda x: dot(W, x))

    return W, sigs, whtMat, unwhtMat
Example #2
0
def pca(data, k):
    comps, latent, scores = svd4(data, k, 0)
    return comps, latent, scores