Example #1
0
def test_dqn(args=get_args()):
    env = create_atari_environment(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.training_num)
    ])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([
        lambda: create_atari_environment(args.task)
        for _ in range(args.test_num)
    ])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = DQN(args.state_shape[0], args.state_shape[1], args.action_shape,
              args.device)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       use_target_network=args.target_update_freq > 0,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * 4)
    print(len(train_collector.buffer))
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn', args.note)
    writer = SummaryWriter(log_path)

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    def train_fn(x):
        policy.set_eps(args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    def save_fn(pol):
        torch.save(pol.state_dict(), os.path.join(log_path, 'policy.pth'))

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               writer=writer,
                               task=args.task)

    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = create_atari_environment(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Example #2
0
def test_dqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # Q_param = V_param = {"hidden_sizes": [128]}
    # model
    net = Net(args.state_shape, args.action_shape,
              hidden_sizes=args.hidden_sizes, device=args.device,
              # dueling=(Q_param, V_param),
              ).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(
        net, optim, args.gamma, args.n_step,
        target_update_freq=args.target_update_freq)
    # buffer
    if args.prioritized_replay:
        buf = PrioritizedVectorReplayBuffer(
            args.buffer_size, buffer_num=len(train_envs),
            alpha=args.alpha, beta=args.beta)
    else:
        buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
    # collector
    train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):
        # eps annnealing, just a demo
        if env_step <= 10000:
            policy.set_eps(args.eps_train)
        elif env_step <= 50000:
            eps = args.eps_train - (env_step - 10000) / \
                40000 * (0.9 * args.eps_train)
            policy.set_eps(eps)
        else:
            policy.set_eps(0.1 * args.eps_train)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.step_per_collect, args.test_num,
        args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn,
        test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, logger=logger)

    assert stop_fn(result['best_reward'])

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        policy.set_eps(args.eps_test)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")

    # save buffer in pickle format, for imitation learning unittest
    buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs))
    policy.set_eps(0.2)
    collector = Collector(policy, test_envs, buf, exploration_noise=True)
    result = collector.collect(n_step=args.buffer_size)
    pickle.dump(buf, open(args.save_buffer_name, "wb"))
    print(result["rews"].mean())
Example #3
0
def test_dqn(args=get_args()):
    env = FrameStack(AtariPreprocessing(gym.make(args.task), scale_obs=True),
                     4)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv([
        lambda: FrameStack(
            AtariPreprocessing(gym.make(args.task), scale_obs=True), 4)
        for _ in range(args.training_num)
    ])
    # test_envs = gym.make(args.task)
    test_envs = ShmVecEnv([
        lambda: FrameStack(
            AtariPreprocessing(gym.make(args.task), scale_obs=True), 4)
        for _ in range(args.test_num)
    ])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = DQN(args.state_shape[1], args.state_shape[2], args.action_shape,
              args.device)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       use_target_network=args.target_update_freq > 0,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                ReplayBuffer(args.buffer_size),
                                episodic=True)
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=10000, sampling=True)
    print(len(train_collector.buffer))
    # log
    writer = SummaryWriter(args.logdir + '/' + 'dqn')

    def stop_fn(x):
        if env.env.spec.reward_threshold:
            return x >= env.spec.reward_threshold
        else:
            return False

    def train_fn(x):
        policy.set_eps(args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               writer=writer,
                               task=args.task)

    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = FrameStack(
            AtariPreprocessing(gym.make(args.task), scale_obs=True), 4)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Example #4
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape: ", args.state_shape)
    print("Actions shape: ", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(1)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path))
        print("Loaded agent from: ", args.resume_path)

    if args.target_model_path:
        victim_policy = copy.deepcopy(policy)
        victim_policy.load_state_dict(torch.load(args.target_model_path))
        print("Loaded victim agent from: ", args.target_model_path)
    else:
        victim_policy = policy

    args.target_policy, args.policy = "dqn", "dqn"
    args.perfect_attack = False
    adv_net = make_victim_network(args, victim_policy)
    adv_atk, _ = make_img_adv_attack(args, adv_net, targeted=False)

    buffer = ReplayBuffer(args.buffer_size, ignore_obs_next=True)
    # collector
    train_collector = adversarial_training_collector(
        policy,
        train_envs,
        adv_atk,
        buffer,
        atk_frequency=args.atk_freq,
        device=args.device)
    test_collector = adversarial_training_collector(
        policy,
        test_envs,
        adv_atk,
        buffer,
        atk_frequency=args.atk_freq,
        test=True,
        device=args.device)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy, policy_name='policy.pth'):
        torch.save(policy.state_dict(), os.path.join(log_path, policy_name))

    def stop_fn(x):
        return 0

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                  (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        writer.add_scalar('train/eps', eps, global_step=env_step)
        print("set eps =", policy.eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        assert args.target_model_path is not None
        print("Testing agent ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[args.test_num],
                                        render=args.render)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * 4)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Example #5
0
def test_pdqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(
        net, optim, args.gamma, args.n_step,
        use_target_network=args.target_update_freq > 0,
        target_update_freq=args.target_update_freq)
    # collector
    if args.prioritized_replay > 0:
        buf = PrioritizedReplayBuffer(
            args.buffer_size, alpha=args.alpha,
            beta=args.alpha, repeat_sample=True)
    else:
        buf = ReplayBuffer(args.buffer_size)
    train_collector = Collector(
        policy, train_envs, buf)
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    def train_fn(x):
        policy.set_eps(args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, train_fn=train_fn, test_fn=test_fn,
        stop_fn=stop_fn, save_fn=save_fn, writer=writer)

    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Example #6
0
def test_dqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
    V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
    net = Net(args.state_shape,
              args.action_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device,
              dueling_param=(Q_param, V_param)).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                VectorReplayBuffer(args.buffer_size,
                                                   len(train_envs)),
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)
    logger = TensorboardLogger(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):  # exp decay
        eps = max(args.eps_train * (1 - 5e-6)**env_step, args.eps_test)
        policy.set_eps(eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               update_per_step=args.update_per_step,
                               stop_fn=stop_fn,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               save_best_fn=save_best_fn,
                               logger=logger)

    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=args.test_num,
                                        render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
Example #7
0
def test_drqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Recurrent(args.layer_num, args.state_shape, args.action_shape,
                    args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # collector
    buffer = VectorReplayBuffer(args.buffer_size,
                                buffer_num=len(train_envs),
                                stack_num=args.stack_num,
                                ignore_obs_next=True)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    # the stack_num is for RNN training: sample framestack obs
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # log
    log_path = os.path.join(args.logdir, args.task, 'drqn')
    writer = SummaryWriter(log_path)
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    def train_fn(epoch, env_step):
        policy.set_eps(args.eps_train)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               update_per_step=args.update_per_step,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger)

    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
Example #8
0
def test_drqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Recurrent(args.layer_num, args.state_shape, args.action_shape,
                    args.device)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       use_target_network=args.target_update_freq > 0,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(
        policy, train_envs,
        ReplayBuffer(args.buffer_size, stack_num=args.stack_num))
    # the stack_num is for RNN training: sample framestack obs
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size)
    # log
    writer = SummaryWriter(args.logdir + '/' + 'dqn')

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    def train_fn(x):
        policy.set_eps(args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               writer=writer)

    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Example #9
0
def test_dqn(args=get_args()):
    env, train_envs, test_envs = make_atari_env(
        args.task,
        args.seed,
        args.training_num,
        args.test_num,
        scale=args.scale_obs,
        frame_stack=args.frames_stack,
    )
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    if args.icm_lr_scale > 0:
        feature_net = DQN(*args.state_shape,
                          args.action_shape,
                          args.device,
                          features_only=True)
        action_dim = np.prod(args.action_shape)
        feature_dim = feature_net.output_dim
        icm_net = IntrinsicCuriosityModule(feature_net.net,
                                           feature_dim,
                                           action_dim,
                                           hidden_sizes=[512],
                                           device=args.device)
        icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
        policy = ICMPolicy(policy, icm_net, icm_optim, args.icm_lr_scale,
                           args.icm_reward_scale,
                           args.icm_forward_loss_weight).to(args.device)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = VectorReplayBuffer(args.buffer_size,
                                buffer_num=len(train_envs),
                                ignore_obs_next=True,
                                save_only_last_obs=True,
                                stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "dqn_icm" if args.icm_lr_scale > 0 else "dqn"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def stop_fn(mean_rewards):
        if env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        elif "Pong" in args.task:
            return mean_rewards >= 20
        else:
            return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        if env_step % 1000 == 0:
            logger.write("train/env_step", env_step, {"train/eps": eps})

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    def save_checkpoint_fn(epoch, env_step, gradient_step):
        # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
        ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
        torch.save({"model": policy.state_dict()}, ckpt_path)
        return ckpt_path

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = VectorReplayBuffer(args.buffer_size,
                                        buffer_num=len(test_envs),
                                        ignore_obs_next=True,
                                        save_only_last_obs=True,
                                        stack_num=args.frames_stack)
            collector = Collector(policy,
                                  test_envs,
                                  buffer,
                                  exploration_noise=True)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=args.test_num,
                                            render=args.render)
        rew = result["rews"].mean()
        print(f"Mean reward (over {result['n/ep']} episodes): {rew}")

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # trainer
    result = offpolicy_trainer(
        policy,
        train_collector,
        test_collector,
        args.epoch,
        args.step_per_epoch,
        args.step_per_collect,
        args.test_num,
        args.batch_size,
        train_fn=train_fn,
        test_fn=test_fn,
        stop_fn=stop_fn,
        save_best_fn=save_best_fn,
        logger=logger,
        update_per_step=args.update_per_step,
        test_in_train=False,
        resume_from_log=args.resume_id is not None,
        save_checkpoint_fn=save_checkpoint_fn,
    )

    pprint.pprint(result)
    watch()
Example #10
0
def test_dqn(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num,
              args.state_shape,
              args.action_shape,
              args.device,
              dueling=(2, 2)).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    def train_fn(x):
        if x <= int(0.1 * args.epoch):
            policy.set_eps(args.eps_train)
        elif x <= int(0.5 * args.epoch):
            eps = args.eps_train - (x - 0.1 * args.epoch) / \
                (0.4 * args.epoch) * (0.5 * args.eps_train)
            policy.set_eps(eps)
        else:
            policy.set_eps(0.5 * args.eps_train)

    def test_fn(x):
        policy.set_eps(args.eps_test)

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer)

    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Example #11
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = VectorReplayBuffer(args.buffer_size,
                                buffer_num=len(train_envs),
                                ignore_obs_next=True,
                                save_only_last_obs=True,
                                stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        if env.env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return mean_rewards >= 20
        else:
            return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        logger.write('train/eps', env_step, eps)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = VectorReplayBuffer(args.buffer_size,
                                        buffer_num=len(test_envs),
                                        ignore_obs_next=True,
                                        save_only_last_obs=True,
                                        stack_num=args.frames_stack)
            collector = Collector(policy,
                                  test_envs,
                                  buffer,
                                  exploration_noise=True)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=args.test_num,
                                            render=args.render)
        rew = result["rews"].mean()
        print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger,
                               update_per_step=args.update_per_step,
                               test_in_train=False)

    pprint.pprint(result)
    watch()
Example #12
0
def test_dqn(args=load_args()):
    # load config
    env_args = args[1]
    args = args[0]
    # load environments
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    train_envs = DummyVectorEnv([
        lambda: gym.make(args.task, **env_args)
        for _ in range(args.training_num)
    ])
    test_envs = DummyVectorEnv([
        lambda: gym.make(args.task, test=True, **env_args)
        for _ in range(args.test_num)
    ])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(
        args.layer_num,
        args.state_shape,
        args.action_shape,
        args.device,  # dueling=(1, 1)
    ).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # learning schedule
    if args.lr_schedule == "linear":
        lr_lambda = lambda epoch: (1 - float(epoch) / args.epoch)
    else:
        lr_lambda = lambda epoch: 1  # constant lr
    scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda)
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # buffer
    if args.prioritized_replay > 0:
        buf = PrioritizedReplayBuffer(args.buffer_size,
                                      alpha=args.alpha,
                                      beta=args.beta)
    else:
        buf = ReplayBuffer(args.buffer_size)
    # collector
    train_collector = Collector(policy, train_envs, buf)
    test_collector = Collector(policy, test_envs)
    # policy.set_eps(1)
    train_collector.collect(n_step=args.batch_size)
    # log
    now = datetime.now()
    dt_string = now.strftime("%Y_%m_%d_%H_%M")
    log_path = os.path.join("log", args.task, 'dqn', dt_string)
    writer = SummaryWriter(log_path)
    copyfile(CONFIG_PATH, os.path.join(log_path, "default.json"))

    def save_fn(policy):
        torch.save(policy.model.state_dict(),
                   os.path.join(log_path, 'policy.pth'))

    def train_fn(epoch, env_step):
        policy.set_eps(
            max(args.final_eps,
                args.init_eps * (1 - 2 * (epoch - 1) / (args.epoch - 1))))

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)
        scheduler.step()

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               save_fn=save_fn,
                               writer=writer,
                               log_interval=10)
Example #13
0
def test_dqn(args=get_args()):
    env = make_atari_env(args)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.env.action_space.shape or env.env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # make environments
    train_envs = SubprocVectorEnv(
        [lambda: make_atari_env(args) for _ in range(args.training_num)])
    test_envs = SubprocVectorEnv(
        [lambda: make_atari_env_watch(args) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # define model
    net = DQN(*args.state_shape, args.action_shape,
              args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = DQNPolicy(net,
                       optim,
                       args.gamma,
                       args.n_step,
                       target_update_freq=args.target_update_freq)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = ReplayBuffer(args.buffer_size,
                          ignore_obs_next=True,
                          save_only_last_obs=True,
                          stack_num=args.frames_stack)
    # collector
    train_collector = Collector(policy, train_envs, buffer)
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'dqn')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        if env.env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        elif 'Pong' in args.task:
            return mean_rewards >= 20
        else:
            return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * \
                (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        writer.add_scalar('train/eps', eps, global_step=env_step)

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Testing agent ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        pprint.pprint(result)

    if args.watch:
        watch()
        exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * 4)
    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               train_fn=train_fn,
                               test_fn=test_fn,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               test_in_train=False)

    pprint.pprint(result)
    watch()