def fit(self, features, labels): """Set the data into the model object Parameters ---------- features : `numpy.ndarray`, shape=(n_samples, n_features) The features matrix labels : `numpy.ndarray`, shape=(n_samples,) The labels vector Returns ------- output : `ModelLinRegWithIntercepts` The current instance with given data """ ModelFirstOrder.fit(self, features, labels) ModelGeneralizedLinearWithIntercepts.fit(self, features, labels) ModelLipschitz.fit(self, features, labels) self._set("_model", _ModelLinRegWithIntercepts(self.features, self.labels, self.fit_intercept, self.n_threads)) return self
def fit(self, features, labels): """Set the data into the model object Parameters ---------- features : {`numpy.ndarray`, `scipy.sparse.csr_matrix`}, shape=(n_samples, n_features) The features matrix, either dense or sparse labels : `numpy.ndarray`, shape=(n_samples,) The labels vector Returns ------- output : `ModelQuadraticHinge` The current instance with given data """ ModelFirstOrder.fit(self, features, labels) ModelGeneralizedLinear.fit(self, features, labels) ModelLipschitz.fit(self, features, labels) self._set( "_model", _ModelModelQuadraticHinge(self.features, self.labels, self.fit_intercept, self.n_threads)) return self
def __init__(self, fit_intercept: bool = True, n_threads: int = 1): ModelFirstOrder.__init__(self) ModelGeneralizedLinearWithIntercepts.__init__(self, fit_intercept) ModelLipschitz.__init__(self) self.n_threads = n_threads