def test_HawkesExpKern_solver_step(self):
        """...Test HawkesExpKern setting of step parameter
        of solver
        """
        for solver in solvers:
            if solver in ['bfgs']:
                msg = '^Solver "%s" has no settable step$' % solver
                with self.assertWarnsRegex(RuntimeWarning, msg):
                    learner = HawkesExpKern(
                        self.decays, solver=solver, step=1,
                        **Test.specific_solver_kwargs(solver))
                    self.assertIsNone(learner.step)
            else:
                learner = HawkesExpKern(self.decays, solver=solver,
                                        step=self.float_1,
                                        **Test.specific_solver_kwargs(solver))
                self.assertEqual(learner.step, self.float_1)
                self.assertEqual(learner._solver_obj.step, self.float_1)
                learner.step = self.float_2
                self.assertEqual(learner.step, self.float_2)
                self.assertEqual(learner._solver_obj.step, self.float_2)

            if solver in ['sgd']:
                msg = '^SGD step needs to be tuned manually$'
                with self.assertWarnsRegex(RuntimeWarning, msg):
                    learner = HawkesExpKern(self.decays, solver='sgd',
                                            max_iter=1)
                    learner.fit(self.events, 0.3)
    def test_corresponding_simu(self):
        """...Test that the corresponding simulation object is correctly
        built
        """
        learner = HawkesExpKern(self.decays, max_iter=10)
        learner.fit(self.events)

        corresponding_simu = learner._corresponding_simu()
        self.assertEqual(corresponding_simu.decays, learner.decays)
        np.testing.assert_array_equal(corresponding_simu.baseline,
                                      learner.baseline)
        np.testing.assert_array_equal(corresponding_simu.adjacency,
                                      learner.adjacency)
Example #3
0
def inference(dataset, decays):
    adj, events, n = load(dataset)

    tick_events = events_to_tick_events(events, n)

    learner = HawkesExpKern(decays=decays, penalty="l1", solver="agd", C=1000, verbose=True)
    learner.fit(tick_events)
    influence_matrix = learner.adjacency
    baseline = learner.baseline
    print("score = {}".format(learner.score()))

    with open("./model/" + dataset + ".pickle", "wb") as f:
        pickle.dump([influence_matrix, baseline, decays, n], f)
    return
Example #4
0
    def test_HawkesExpKern_score(self):
        """...Test HawkesExpKern score method
        """
        n_nodes = 2
        n_realizations = 3

        train_events = [[
            np.cumsum(np.random.rand(4 + i)) for i in range(n_nodes)
        ] for _ in range(n_realizations)]

        test_events = [[
            np.cumsum(np.random.rand(4 + i)) for i in range(n_nodes)
        ] for _ in range(n_realizations)]

        learner = HawkesExpKern(self.decays)

        msg = '^You must either call `fit` before `score` or provide events$'
        with self.assertRaisesRegex(ValueError, msg):
            learner.score()

        given_baseline = np.random.rand(n_nodes)
        given_adjacency = np.random.rand(n_nodes, n_nodes)

        learner.fit(train_events)

        train_score_current_coeffs = learner.score()
        self.assertAlmostEqual(train_score_current_coeffs, 2.0855840)

        train_score_given_coeffs = learner.score(baseline=given_baseline,
                                                 adjacency=given_adjacency)
        self.assertAlmostEqual(train_score_given_coeffs, 0.59502417)

        test_score_current_coeffs = learner.score(test_events)
        self.assertAlmostEqual(test_score_current_coeffs, 1.6001762)

        test_score_given_coeffs = learner.score(test_events,
                                                baseline=given_baseline,
                                                adjacency=given_adjacency)
        self.assertAlmostEqual(test_score_given_coeffs, 0.89322199)
    def test_HawkesExpKern_fit_start(self):
        """...Test HawkesExpKern starting point of fit method
        """
        n_nodes = len(self.events)
        n_coefs = n_nodes + n_nodes * n_nodes
        # Do not step
        learner = HawkesExpKern(self.decays, max_iter=-1)

        learner.fit(self.events)
        np.testing.assert_array_equal(learner.coeffs, np.ones(n_coefs))

        learner.fit(self.events, start=self.float_1)
        np.testing.assert_array_equal(learner.coeffs,
                                      np.ones(n_coefs) * self.float_1)

        learner.fit(self.events, start=self.int_1)
        np.testing.assert_array_equal(learner.coeffs,
                                      np.ones(n_coefs) * self.int_1)

        random_coeffs = np.random.rand(n_coefs)
        learner.fit(self.events, start=random_coeffs)
        np.testing.assert_array_equal(learner.coeffs, random_coeffs)
    def test_HawkesExpKern_fit(self):
        """...Test HawkesExpKern fit with different solvers
        and penalties
        """
        sto_seed = 179312
        n_nodes = 2
        events, baseline, adjacency = Test.get_train_data(
            n_nodes=n_nodes, betas=self.decays)
        start = 0.3
        initial_adjacency_error = \
            Test.estimation_error(start * np.ones((n_nodes, n_nodes)),
                                  adjacency)

        for gofit in gofits:
            for penalty in penalties:
                for solver in solvers:

                    solver_kwargs = {
                        'penalty': penalty,
                        'tol': 1e-10,
                        'solver': solver,
                        'verbose': False,
                        'max_iter': 10,
                        'gofit': gofit
                    }

                    if penalty != 'none':
                        solver_kwargs['C'] = 50

                    if solver in ['sgd', 'svrg']:
                        solver_kwargs['random_state'] = sto_seed

                    # manually set step
                    if solver == 'sgd' and gofit == 'likelihood':
                        solver_kwargs['step'] = 3e-1
                    elif solver == 'sgd' and gofit == 'least-squares':
                        solver_kwargs['step'] = 1e-5
                    elif solver == 'svrg' and gofit == 'likelihood':
                        solver_kwargs['step'] = 1e-3
                    elif solver == 'svrg' and gofit == 'least-squares':
                        continue

                    if solver == 'bfgs':
                        # BFGS only accepts ProxZero and ProxL2sq for now
                        if penalty != 'l2':
                            continue

                    if penalty == 'nuclear':
                        # Nuclear penalty only compatible with batch solvers
                        if solver in \
                                HawkesExpKern._solvers_stochastic:
                            continue

                    learner = HawkesExpKern(self.decays, **solver_kwargs)
                    learner.fit(events, start=start)
                    adjacency_error = Test.estimation_error(
                        learner.adjacency, adjacency)
                    self.assertLess(
                        adjacency_error, initial_adjacency_error * 0.8,
                        "solver %s with penalty %s and "
                        "gofit %s reached too high "
                        "baseline error" % (solver, penalty, gofit))