Example #1
0
def main():
    log.info('Loading %s...', TicTacToeGame.__name__)
    g = TicTacToeGame()

    log.info('Loading %s...', nn.__name__)
    nnet = nn(g)

    if args.load_model:
        log.info(f'Loading checkpoint "{args.load_folder_file}" ...')
        nnet.load_checkpoint(args.load_folder_file[0],
                             args.load_folder_file[1])
    else:
        log.warning('Not loading a checkpoint!')

    log.info('Loading the Coach...')
    c = Coach(g, nnet, args)

    if args.load_model:
        log.info("Loading 'trainExamples' from file...")
        c.loadTrainExamples()

    log.info('Starting the learning process 🎉')
    c.learn()
Example #2
0
# all players
#rp = RandomPlayer(g).play

if gameChoice == 0:
    gp = GreedyOthelloPlayer(g).play
    hp = HumanOthelloPlayer(g).play
elif gameChoice == 1:
    hp = HumanTicTacToePlayer(g).play
elif gameChoice == 2:
    hp = HumanNimPlayer(g).play

# nnet players
if gameChoice == 0:
    n1 = NNet(g)
else:
    n1 = nn(g)

if gameChoice == 0:
    if mini_othello:
        n1.load_checkpoint('./pretrained_models/othello/pytorch/',
                           '6x100x25_best.pth.tar')
    else:
        n1.load_checkpoint('./pretrained_models/othello/pytorch/',
                           '8x8_100checkpoints_best.pth.tar')
elif gameChoice == 1:
    n1.load_checkpoint(
        '/Users/mettinger/github/alpha-zero-general/pretrained_models/tictactoe/keras',
        'best-25eps-25sim-10epch.pth.tar')
elif gameChoice == 2:
    n1.load_checkpoint('''/Users/mettinger/Google Drive/models''',
                       'best.pth.tar')
Example #3
0
    25,
    'tempThreshold':
    15,
    'updateThreshold':
    0.55,
    'maxlenOfQueue':
    200000,
    'numMCTSSims':
    25,
    'arenaCompare':
    50,
    'cpuct':
    1,
    'checkpoint':
    './temp/tictactoe/',
    'load_model':
    False,
    'load_folder_file': ('./models/tictactoe/10x25x25', 'best.pth.tar'),
})

if __name__ == "__main__":
    g = TicTacToeGame()
    nnet = nn(g)

    if args.load_model:
        nnet.load_checkpoint(args.load_folder_file[0],
                             args.load_folder_file[1])

    c = Coach(g, nnet, args)
    c.learn()
Example #4
0
from utils import *
"""
use this script to play any two agents against each other, or play manually with
any agent.
"""

human_vs_cpu = True

g = TicTacToeGame()

# all players
rp = RandomPlayer(g).play
hp = HumanTicTacToePlayer(g).play

# nnet players
n1 = nn(g)
n1.load_checkpoint('./pretrained_models/tictactoe/keras/',
                   'best-25eps-25sim-10epch.pth.tar')
args1 = dotdict({'numMCTSSims': 50, 'cpuct': 1.0})
mcts1 = MCTS(g, n1, args1)
n1p = lambda x: np.argmax(mcts1.getActionProb(x, temp=0))

if human_vs_cpu:
    player2 = hp
else:
    n2 = nn(g)
    n2.load_checkpoint('./pretrained_models/othello/pytorch/',
                       '8x8_100checkpoints_best.pth.tar')
    args2 = dotdict({'numMCTSSims': 50, 'cpuct': 1.0})
    mcts2 = MCTS(g, n2, args2)
    n2p = lambda x: np.argmax(mcts2.getActionProb(x, temp=0))