def data_avpf(self, data): # TODO: move to an other place in set_config or in PensionData data_avpf = PensionData(data.workstate, data.sali, data.info_ind) data_avpf.sali = imput_sali_avpf(data_avpf, code_avpf, self.P_longit) if compare_destinie: smic_long = self.P_longit.common.smic_proj year_avpf = (data_avpf.workstate != 0) data_avpf.sali = multiply(year_avpf, smic_long) return data_avpf
def load_pensipp_data(pensipp_path, yearsim, first_year_sal, selection_id=False): try: info, info_child, salaire, statut = load_from_csv( pensipp_comparison_path) except: print(" Les données sont chargées à partir du Rdata et non du csv") info, info_child, salaire, statut = load_from_Rdata( pensipp_comparison_path, to_csv=True) if max(info.loc[:, 'sexe']) == 2: info.loc[:, 'sexe'] = info.loc[:, 'sexe'].replace(1, 0) info.loc[:, 'sexe'] = info.loc[:, 'sexe'].replace(2, 1) info.loc[:, 'agem'] = (yearsim - info['t_naiss']) * 12 info.drop('t_naiss', axis=1, inplace=True) select_id_depart = (info.loc[:, 'agem'] == 12 * 63) id_selected = select_id_depart[select_id_depart == True].index if selection_id: id_selected = selection_id ix_selected = [int(ident) - 1 for ident in id_selected] sali = salaire.iloc[ix_selected, :] workstate = statut.iloc[ix_selected, :] info_child_ = _child_by_age(info_child, yearsim, id_selected) nb_pac = count_enf_pac(info_child_, info.index) info_ind = info.iloc[ix_selected, :] info_ind.loc[:, 'nb_pac'] = nb_pac data = PensionData.from_arrays(workstate, sali, info_ind) data_bounded = data.selected_dates(first=first_year_sal, last=yearsim) # TODO: commun declaration for codes and names regimes : Déclaration inapte (mais adapté à Taxipp) array_enf = count_enf_by_year(data_bounded.workstate, info_ind, info_child) dict_regime = { 'FP': [5, 6], 'RG': [3, 4, 1, 2, 9, 8, 0], 'RSI': [7] } #On met les inactifs/chomeurs/avpf ou préretraité au RG # ajoute les variables d'enfants pour info_ind rec = data_bounded.info_ind newdtype = [('nb_enf_' + name, '<i8') for name in dict_regime] + [('nb_enf_all', '<i8')] newdtype = np.dtype(rec.dtype.descr + newdtype) print newdtype info_ind = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: info_ind[field] = rec[field] # rempli les colonnes nb_enf for name_reg, code_reg in dict_regime.iteritems(): nb_enf_regime = (array_enf * data_bounded.workstate.isin(code_reg)).sum(axis=1) info_ind['nb_enf_' + name_reg] = nb_enf_regime info_ind['nb_enf_all'] += nb_enf_regime # data_bounded.info_ind['nb_enf_' + name_reg] = nb_enf_regime # nb_enf_all += nb_enf_regime # info_ind.loc[:,'nb_enf'] = nb_enf_all #print sum(nb_enf_all - info_ind.loc[:,'nb_born']) #print info_ind.loc[15478, ['nb_born', 'nb_enf', 'nb_enf_RG', 'nb_enf_FP', 'nb_enf_RSI']] data_bounded.info_ind = info_ind return data_bounded
def run_pension(context, yearleg, time_step='year', to_check=False, output='pension', cProfile=False): ''' run PensionSimulation after having converted the liam context in a PenionData - note there is a selection ''' sali = context['longitudinal']['sali'] workstate = context['longitudinal']['workstate'] # calcul de la date de naissance au bon format datesim = context['period'] age_year = context['agem'] // 12 age_month = context['agem'] % 12 + 1 naiss_year = datesim // 100 - age_year naiss_month = datesim % 100 - age_month + 1 naiss = pd.Series(naiss_year * 100 + naiss_month) naiss = naiss.map(lambda t: dt.date(t // 100, t % 100, 1)) info_ind = pd.DataFrame({'index':context['id'], 'agem': context['agem'],'naiss': naiss, 'sexe' : context['sexe'], 'nb_enf_all': context['nb_enf'], 'nb_pac': context['nb_pac'], 'nb_enf_RG': context['nb_enf_RG'], 'nb_enf_RSI': context['nb_enf_RSI'], 'nb_enf_FP': context['nb_enf_FP'], 'tauxprime': context['tauxprime']}) info_ind = info_ind.to_records(index=False) # TODO: filter should be done in liam if output == 'dates_taux_plein': # But: déterminer les personnes partant à la retraite avec préselection des plus de 55 ans #TODO: faire la préselection dans Liam info_ind = info_ind[(info_ind['agem'] > 55 * 12)] if output == 'pension': info_ind = info_ind[context['to_be_retired']] #TODO: filter should be done in yaml workstate = workstate.loc[workstate['id'].isin(info_ind.index), :].copy() workstate.set_index('id', inplace=True) workstate.sort_index(inplace=True) sali = sali.loc[sali['id'].isin(info_ind.index), :].copy() sali.set_index('id', inplace=True) sali.sort_index(inplace=True) sali.fillna(0, inplace=True) yearleg = context['period'] // 100 if yearleg > 2009: #TODO: remove yearleg = 2009 data = PensionData.from_arrays(workstate, sali, info_ind) param = PensionParam(yearleg, data) legislation = PensionLegislation(param) simul_til = PensionSimulation(data, legislation) if cProfile: result_til_year = simul_til.profile_evaluate(yearleg, to_check=to_check, output=output) else: result_til_year = simul_til.evaluate(yearleg, to_check=to_check, output=output) if output == 'dates_taux_plein': # Renvoie un dictionnaire donnant la date de taux plein par régime (format numpy) et l'index associé return result_til_year elif output == 'pension': result_to_liam = output_til_to_liam(output_til=result_til_year, index_til=info_ind.index, context_id=context['id']) return result_to_liam.astype(float)
def load_pensipp_data(pensipp_path, yearsim, first_year_sal, selection_id=False): try: info, info_child, salaire, statut = load_from_csv(pensipp_comparison_path) except: print (" Les données sont chargées à partir du Rdata et non du csv") info, info_child, salaire, statut = load_from_Rdata(pensipp_comparison_path, to_csv=True) if max(info.loc[:, "sexe"]) == 2: info.loc[:, "sexe"] = info.loc[:, "sexe"].replace(1, 0) info.loc[:, "sexe"] = info.loc[:, "sexe"].replace(2, 1) info.loc[:, "agem"] = (yearsim - info["t_naiss"]) * 12 info.drop("t_naiss", axis=1, inplace=True) select_id_depart = info.loc[:, "agem"] == 12 * 63 id_selected = select_id_depart[select_id_depart == True].index if selection_id: id_selected = selection_id ix_selected = [int(ident) - 1 for ident in id_selected] sali = salaire.iloc[ix_selected, :] workstate = statut.iloc[ix_selected, :] info_child_ = _child_by_age(info_child, yearsim, id_selected) nb_pac = count_enf_pac(info_child_, info.index) info_ind = info.iloc[ix_selected, :] info_ind.loc[:, "nb_pac"] = nb_pac data = PensionData.from_arrays(workstate, sali, info_ind) data_bounded = data.selected_dates(first=first_year_sal, last=yearsim) # TODO: commun declaration for codes and names regimes : Déclaration inapte (mais adapté à Taxipp) array_enf = count_enf_by_year(data_bounded.workstate, info_ind, info_child) dict_regime = { "FP": [5, 6], "RG": [3, 4, 1, 2, 9, 8, 0], "RSI": [7], } # On met les inactifs/chomeurs/avpf ou préretraité au RG # ajoute les variables d'enfants pour info_ind rec = data_bounded.info_ind newdtype = [("nb_enf_" + name, "<i8") for name in dict_regime] + [("nb_enf_all", "<i8")] newdtype = np.dtype(rec.dtype.descr + newdtype) print newdtype info_ind = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: info_ind[field] = rec[field] # rempli les colonnes nb_enf for name_reg, code_reg in dict_regime.iteritems(): nb_enf_regime = (array_enf * data_bounded.workstate.isin(code_reg)).sum(axis=1) info_ind["nb_enf_" + name_reg] = nb_enf_regime info_ind["nb_enf_all"] += nb_enf_regime # data_bounded.info_ind['nb_enf_' + name_reg] = nb_enf_regime # nb_enf_all += nb_enf_regime # info_ind.loc[:,'nb_enf'] = nb_enf_all # print sum(nb_enf_all - info_ind.loc[:,'nb_born']) # print info_ind.loc[15478, ['nb_born', 'nb_enf', 'nb_enf_RG', 'nb_enf_FP', 'nb_enf_RSI']] data_bounded.info_ind = info_ind return data_bounded
def get_pension(context, yearleg): """ return a PensionSimulation """ sali = context["longitudinal"]["sali"] workstate = context["longitudinal"]["workstate"] # calcul de la date de naissance au bon format datesim = context["period"] datesim_in_month = 12 * (datesim // 100) + datesim % 100 datenaiss_in_month = datesim_in_month - context["agem"] naiss = 100 * (datenaiss_in_month // 12) + datenaiss_in_month % 12 + 1 naiss = pd.Series(naiss) naiss = pd.Series(naiss).map(lambda t: dt.date(t // 100, t % 100, 1)) info_ind = pd.DataFrame( { "index": context["id"], "agem": context["agem"], "naiss": naiss, "sexe": context["sexe"], "nb_enf_all": context["nb_enf"], "nb_pac": context["nb_pac"], "nb_enf_RG": context["nb_enf_RG"], "nb_enf_RSI": context["nb_enf_RSI"], "nb_enf_FP": context["nb_enf_FP"], "tauxprime": context["tauxprime"], } ) info_ind = info_ind.to_records(index=False) workstate = workstate.loc[workstate["id"].isin(info_ind.index), :].copy() workstate.set_index("id", inplace=True) workstate.sort_index(inplace=True) sali = sali.loc[sali["id"].isin(info_ind.index), :].copy() sali.set_index("id", inplace=True) sali.sort_index(inplace=True) sali.fillna(0, inplace=True) data = PensionData.from_arrays(workstate, sali, info_ind) param = PensionParam(yearleg, data) legislation = PensionLegislation(param) simulation = PensionSimulation(data, legislation) simulation.set_config() return simulation
sexe = data['sexi'][0] == 2 nb_enf = data['nbenf'][0] return workstate, sali, sexe, nb_enf agem = (2009-1954 + 0.5)*12 naiss = dt.date(1954, 6, 1) info_ind['agem'] = agem info_ind['naiss'] = naiss info_ind['tauxprime'] = 0 for i in range(nb_scenarios): work_i, sali_i, sexe, nb_enf = load_case(i+1) # Attention déclage dans la numérotaiton qui ne commence pas à zeros sali[i,:] = sali_i workstate[i,:] = work_i info_ind.loc[i,['sexe','nb_enf','nb_pac', 'nb_enf_RG','nb_enf_RSI','nb_enf_FP']] = [sexe, nb_enf, nb_enf, nb_enf, nb_enf, nb_enf] #TODO: know why nbenf is often NaN and not 0. info_ind.fillna(0, inplace=True) data = PensionData.from_arrays(workstate, sali, info_ind, dates) param = PensionParam(201001, data) legislation = PensionLegislation(param) simulation = PensionSimulation(data, legislation) trim = simulation.profile_evaluate(output='trimesters_wages') result_til_year = simulation.profile_evaluate(to_check=True) pdb.set_trace()