# perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(len(X), 16)): e = W[:, i].reshape(X[0].shape) E.append(normalize(e, 0, 255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.png") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps = [i for i in xrange(10, min(len(X), 320), 20)] E = [] for i in xrange(min(len(steps), 16)): numEvs = steps[i] P = project(W[:, 0:numEvs], X[0].reshape(1, -1), mu) R = reconstruct(W[:, 0:numEvs], P, mu) # reshape and append to plots R = R.reshape(X[0].shape)
# read images [X,y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.png") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps=[i for i in xrange(10, min(len(X), 320), 20)] E = [] for i in xrange(min(len(steps), 16)): numEvs = steps[i] P = project(W[:,0:numEvs], X[0].reshape(1,-1), mu) R = reconstruct(W[:,0:numEvs], P, mu) # reshape and append to plots R = R.reshape(X[0].shape) E.append(normalize(R,0,255)) # plot them and store the plot to "python_reconstruction.pdf" subplot(title="Reconstruction AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenvectors", sptitles=steps, colormap=cm.gray, filename="python_pca_reconstruction.png")
[X,y] = read_images("/home/priyanka/Desktop/CV/scripts/att_faces") [D, W, mu] = pca(asRowMatrix(X), y) import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in range(min(len(X), 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_eigenfaces.pdf" subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="python_pca_eigenfaces.pdf") from tinyfacerec.subspace import project, reconstruct # reconstruction steps steps=[i for i in range(10, min(len(X), 320), 20)] E = [] for i in range(min(len(steps), 16)): numEvs = steps[i] P = project(W[:,0:numEvs], X[0].reshape(1,-1), mu) R = reconstruct(W[:,0:numEvs], P, mu) # print(R) # print(E) # reshape and append to plots R = R.reshape(X[0].shape)
print "USAGE: example_fisherfaces.py </path/to/images>" sys.exit() # read images [X,y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = fisherfaces(asRowMatrix(X), y) #import colormaps import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(W.shape[1], 16)): e = W[:,i].reshape(X[0].shape) E.append(normalize(e,0,255)) # plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="python_fisherfaces_fisherfaces.png") from tinyfacerec.subspace import project, reconstruct E = [] for i in xrange(min(W.shape[1], 16)): e = W[:,i].reshape(-1,1) P = project(e, X[0].reshape(1,-1), mu) R = reconstruct(e, P, mu) # reshape and append to plots R = R.reshape(X[0].shape) E.append(normalize(R,0,255)) # plot them and store the plot to "python_reconstruction.pdf" subplot(title="Fisherfaces Reconstruction Yale FDB", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.gray, filename="python_fisherfaces_reconstruction.png")
[X, y] = read_images(sys.argv[1]) # perform a full pca [D, W, mu] = fisherfaces(asRowMatrix(X), y) #import colormaps import matplotlib.cm as cm # turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(W.shape[1], 16)): e = W[:, i].reshape(X[0].shape) E.append(normalize(e, 0, 255)) # plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="python_fisherfaces_fisherfaces.png") from tinyfacerec.subspace import project, reconstruct E = [] for i in xrange(min(W.shape[1], 16)): e = W[:, i].reshape(-1, 1) P = project(e, X[0].reshape(1, -1), mu) R = reconstruct(e, P, mu) # reshape and append to plots R = R.reshape(X[0].shape) E.append(normalize(R, 0, 255)) # plot them and store the plot to "python_reconstruction.pdf"