def test_ssd300_infer(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") model = Model(ssd300_infer()) model.compile() loc, score = model.predict(ts.ones((1, 3, 300, 300))) print(loc.asnumpy(), score.asnumpy())
def test_mobilenetv2_infer(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") model = Model(mobilenetv2_infer()) model.compile() z = model.predict(ts.ones((1, 3, 224, 224))) print(z.asnumpy())
def test_densenetBC_100(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") model = Model(densenetBC_100()) model.compile() z = model.predict(ts.ones((1, 3, 32, 32))) print(z.asnumpy())
def test_sequential(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = layers.SequentialLayer([ layers.Conv2d(1, 6, 5, pad_mode='valid', weight_init="ones"), layers.ReLU(), layers.MaxPool2d(kernel_size=2, stride=2) ]) model = Model(net) model.compile() z = model.predict(ts.ones((1, 1, 32, 32))) print(z.asnumpy())
def do_eval(dataset=None, network=None, num_class=2, assessment_method="accuracy", load_checkpoint_path=""): """ do eval """ if load_checkpoint_path == "": raise ValueError( "Finetune model missed, evaluation task must load finetune model!") net_for_pretraining = network(bert_net_cfg, False, num_class) net_for_pretraining.set_train(False) model = Model(net_for_pretraining) model.load_checkpoint((load_checkpoint_path)) if assessment_method == "accuracy": callback = Accuracy() elif assessment_method == "f1": callback = F1(False, num_class) elif assessment_method == "mcc": callback = MCC() elif assessment_method == "spearman_correlation": callback = SpearmanCorrelation() else: raise ValueError( "Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]" ) columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"] for data in dataset.create_dict_iterator(): input_data = [] for i in columns_list: input_data.append(data[i]) input_ids, input_mask, token_type_id, label_ids = input_data logits = model.predict(input_ids, input_mask, token_type_id, label_ids) callback.update(logits, label_ids) print("==============================================================") eval_result_print(assessment_method, callback) print("==============================================================")
eval_net = ssd300_infer(class_num=args_opt.num_classes) model = Model(eval_net) if args_opt.checkpoint_path: model.load_checkpoint(args_opt.checkpoint_path) # perform the model predict operation print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment...") start = time.time() pred_data = [] id_iter = 0 for data in ds_eval.create_dict_iterator(output_numpy=True): image_np = data['image'] image_shape = data['image_shape'] output = model.predict(Tensor(image_np)) for batch_idx in range(image_np.shape[0]): pred_data.append({ "boxes": output[0].asnumpy()[batch_idx], "box_scores": output[1].asnumpy()[batch_idx], "img_id": id_iter, "image_shape": image_shape[batch_idx] }) id_iter += 1 cost_time = int((time.time() - start) * 1000) print(f' 100% [{total}/{total}] cost {cost_time} ms') # calculate mAP for the predict data voc_cls = [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train',