Example #1
0
    def setUp(self):
        uncorr_map = accessors.open(uncorr_path)
        corr_map = accessors.open(corr_path)
        map_with_sources = accessors.open(deconv_path)

        self.uncorr_image = image.ImageData(uncorr_map.data, uncorr_map.beam,
                                            uncorr_map.wcs)
        self.corr_image = image.ImageData(corr_map.data, uncorr_map.beam,
                                          uncorr_map.wcs)
        self.image_with_sources = image.ImageData(map_with_sources.data,
                                                  map_with_sources.beam,
                                                  map_with_sources.wcs)
Example #2
0
 def setUp(self):
     # Beam here is a random beam, in this case the WENSS beam
     # without the declination dependence.
     fitsfile = tkp.accessors.fitsimage.FitsImage(corrected_fits,
                                                  beam=(54. / 3600,
                                                        54. / 3600, 0.))
     self.my_im = image.ImageData(fitsfile.data, fitsfile.beam,
                                  fitsfile.wcs)
Example #3
0
 def setUp(self):
     # Beam here is a random beam, in this case the WENSS beam
     # without the declination dependence.
     fitsfile = tkp.accessors.fitsimage.FitsImage(corrected_fits,
                                                  beam=(54. / 3600,
                                                        54. / 3600, 0.))
     self.image = image.ImageData(fitsfile.data, fitsfile.beam,
                                  fitsfile.wcs)
     self.results = self.image.extract(det=10.0, anl=3.0)
Example #4
0
 def setUp(self):
     # This image is of the whole sequence, so obviously we won't see the
     # transient varying. In fact, due to a glitch in the simulation
     # process, it will appear smeared out & shouldn't be identified at
     # all.
     # Beam here is a random beam, in this case the WENSS beam
     # without the declination dependence.
     fitsfile = tkp.accessors.fitsimage.FitsImage(all_fits,
                                                  beam=(54. / 3600,
                                                        54. / 3600, 0.))
     self.image = image.ImageData(fitsfile.data,
                                  fitsfile.beam,
                                  fitsfile.wcs,
                                  radius=100)
     self.results = self.image.extract(det=5, anl=3.0)
    def setUp(self):
        fitsfile = tkp.accessors.open(
            os.path.join(DATAPATH,
                         'sourcefinder/simulations/deconvolved.fits'))
        img = image.ImageData(fitsfile.data, fitsfile.beam, fitsfile.wcs)

        # This is quite subtle. We bypass any possible flaws in the
        # kappa, sigma clipping algorithm by supplying a background
        # level and noise map.  In this way we make sure that any
        # possible biases in the measured source parameters cannot
        # come from biases in the background level.  The peak fluxes,
        # in particular, can be biased low if the background levels
        # are biased high.  The background and noise levels supplied
        # here are the true values.

        extraction_results = img.extract(det=10.0,
                                         anl=6.0,
                                         noisemap=np.ma.array(BG_STD * np.ones(
                                             (2048, 2048))),
                                         bgmap=np.ma.array(BG_MEAN * np.ones(
                                             (2048, 2048))))
        self.number_sources = len(extraction_results)

        peak_fluxes = []
        deconv_smajaxes = []
        deconv_sminaxes = []
        deconv_bpas = []

        for sources in extraction_results:
            peak_fluxes.append([sources.peak.value, sources.peak.error])
            deconv_smajaxes.append(
                [sources.smaj_dc.value, sources.smaj_dc.error])
            deconv_sminaxes.append(
                [sources.smin_dc.value, sources.smin_dc.error])
            deconv_bpas.append(
                [sources.theta_dc.value, sources.theta_dc.error])

        self.peak_fluxes = np.array(peak_fluxes)
        self.deconv_smajaxes = np.array(deconv_smajaxes)
        self.deconv_sminaxes = np.array(deconv_sminaxes)
        self.deconv_bpas = np.array(deconv_bpas)