Example #1
0
    def flag(self, vis, vis_mask, li, gi, tf, ts, **kwargs):
        """Function that does the actual flag."""

        # if all have been masked, no need to flag again
        if vis_mask.all():
            return

        first_threshold = self.params['first_threshold']
        exp_factor = self.params['exp_factor']
        distribution = self.params['distribution']
        max_threshold_len = self.params['max_threshold_len']
        sensitivity = self.params['sensitivity']
        min_connected = self.params['min_connected']
        flag_direction = self.params['flag_direction']
        tk_size = self.params['tk_size']
        fk_size = self.params['fk_size']
        threshold_num = max(0, int(self.params['threshold_num']))

        vis_abs = np.abs(vis) # operate only on the amplitude

        # first round
        # first complete masked vals due to ns by interpolate
        itp = interpolate.Interpolate(vis_abs, vis_mask)
        background = itp.fit()
        # Gaussian fileter
        gf = gaussian_filter.GaussianFilter(background, time_kernal_size=tk_size, freq_kernal_size=fk_size)
        background = gf.fit()
        # sum-threshold
        vis_diff = vis_abs - background
        # an initial run of N = 1 only to remove extremely high amplitude RFI
        st = sum_threshold.SumThreshold(vis_diff, vis_mask, first_threshold, exp_factor, distribution, 1, min_connected)
        st.execute(sensitivity, flag_direction)

        # if all have been masked, no need to flag again
        if st.vis_mask.all():
            vis_mask[:] = st.vis_mask
            return

        # next rounds
        for i in xrange(threshold_num):
            # Gaussian fileter
            gf = gaussian_filter.GaussianFilter(vis_diff, st.vis_mask, time_kernal_size=tk_size, freq_kernal_size=fk_size)
            background = gf.fit()
            # sum-threshold
            vis_diff = vis_diff - background
            st = sum_threshold.SumThreshold(vis_diff, st.vis_mask, first_threshold, exp_factor, distribution, max_threshold_len, min_connected)
            st.execute(sensitivity, flag_direction)

            # if all have been masked, no need to flag again
            if st.vis_mask.all():
                break

        # replace vis_mask with the flagged mask
        vis_mask[:] = st.vis_mask
Example #2
0
    def flag(self, vis, vis_mask, li, gi, fb, ts, **kwargs):
        """Function that does the actual flag."""

        # if all have been masked, no need to flag again
        if vis_mask.all():
            return

        first_threshold = self.params['first_threshold']
        exp_factor = self.params['exp_factor']
        distribution = self.params['distribution']
        max_threshold_len = self.params['max_threshold_len']
        sensitivity = self.params['sensitivity']
        min_connected = self.params['min_connected']
        flag_direction = self.params['flag_direction']

        vis_abs = np.abs(vis)  # operate only on the amplitude

        # first complete masked vals due to ns by interpolate
        itp = interpolate.Interpolate(vis_abs, vis_mask)
        background = itp.fit()
        background1 = background.copy()

        # nt, nf = background.shape
        # for fi in range(nf):
        #     background[:, fi] = multiscale.median_wavelet_smooth(background[:, fi], level=4)
        # for ti in range(nt):
        #     if fb[0] == fb[1]:
        #         background[ti, :] = multiscale.median_wavelet_smooth(background[ti, :], level=2)
        #     else:
        #         background[ti, :] = multiscale.median_wavelet_smooth(background[ti, :], level=3)
        background[:] = multiscale.median_wavelet_smooth(background, level=2)

        # sum-threshold
        # vis_diff = vis_abs - background
        vis_diff = background1 - background
        # an initial run of N = 1 only to remove extremely high amplitude RFI
        st = sum_threshold.SumThreshold(vis_diff, vis_mask, first_threshold,
                                        exp_factor, distribution, 1,
                                        min_connected)
        st.execute(sensitivity, flag_direction)

        # if all have been masked, no need to flag again
        if st.vis_mask.all():
            vis_mask[:] = st.vis_mask
            return

        vis_diff = np.where(st.vis_mask, 0, vis_diff)

        st = sum_threshold.SumThreshold(vis_diff, st.vis_mask, first_threshold,
                                        exp_factor, distribution,
                                        max_threshold_len, min_connected)
        st.execute(sensitivity, flag_direction)

        vis_mask[:] = st.vis_mask