Example #1
0
 def _create_examples(self, lines, set_type):
   """Creates examples for the training and dev sets."""
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "%s-%s" % (set_type, i)
     text_a = tokenization.convert_to_unicode(line[0])
     if set_type == "test":
       label = "0"
     else:
       label = tokenization.convert_to_unicode(line[1])
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
   return examples    
Example #2
0
 def get_dev_examples(self, data_dir):
   """See base class."""
   lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "dev-%d" % (i)
     language = tokenization.convert_to_unicode(line[0])
     if language != tokenization.convert_to_unicode(self.language):
       continue
     text_a = tokenization.convert_to_unicode(line[6])
     text_b = tokenization.convert_to_unicode(line[7])
     label = tokenization.convert_to_unicode(line[1])
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
   return examples
Example #3
0
 def get_train_examples(self, data_dir):
   """See base class."""
   lines = self._read_tsv(
       os.path.join(data_dir, "multinli",
                    "multinli.train.%s.tsv" % self.language))
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "train-%d" % (i)
     text_a = tokenization.convert_to_unicode(line[0])
     text_b = tokenization.convert_to_unicode(line[1])
     label = tokenization.convert_to_unicode(line[2])
     if label == tokenization.convert_to_unicode("contradictory"):
       label = tokenization.convert_to_unicode("contradiction")
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
   return examples
Example #4
0
def create_training_instances(input_files, tokenizer, max_seq_length,
                              dupe_factor, short_seq_prob, masked_lm_prob,
                              max_predictions_per_seq, rng):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]

    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    for input_file in input_files:
        with tf.gfile.GFile(input_file, FLAGS.input_file_mode) as reader:
            while True:
                line = reader.readline()
                #if not FLAGS.spm_model_file:
                line = tokenization.convert_to_unicode(line)
                if not line:
                    break
                #if FLAGS.spm_model_file:
                #  line = tokenization.preprocess_text(line, lower=FLAGS.do_lower_case)
                else:
                    line = line.strip()

                # Empty lines are used as document delimiters
                if not line:
                    all_documents.append([])
                tokens = tokenizer.tokenize(line)
                if tokens:
                    all_documents[-1].append(tokens)

    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    rng.shuffle(all_documents)

    vocab_words = list(tokenizer.vocab.keys())
    instances = []
    for _ in range(dupe_factor):
        for document_index in range(len(all_documents)):
            instances.extend(
                create_instances_from_document(all_documents, document_index,
                                               max_seq_length, short_seq_prob,
                                               masked_lm_prob,
                                               max_predictions_per_seq,
                                               vocab_words, rng))

    rng.shuffle(instances)
    return instances
Example #5
0
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  processors = {
      "cola": ColaProcessor,
      "mnli": MnliProcessor,
      "mrpc": MrpcProcessor,
      "xnli": XnliProcessor,
      "sst2": Sst2Processor
  }

  tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                FLAGS.init_checkpoint)

  if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
    raise ValueError(
        "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.max_seq_length > bert_config.max_position_embeddings:
    raise ValueError(
        "Cannot use sequence length %d because the BERT model "
        "was only trained up to sequence length %d" %
        (FLAGS.max_seq_length, bert_config.max_position_embeddings))

  tf.gfile.MakeDirs(FLAGS.output_dir)

  task_name = FLAGS.task_name.lower()

  if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))

  processor = processors[task_name]()

  label_list = processor.get_labels()

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = None
  num_train_steps = None
  num_warmup_steps = None
  if FLAGS.do_train:
    train_examples = processor.get_train_examples(FLAGS.data_dir)
    num_train_steps = int(
        len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

  model_fn = model_fn_builder(
      bert_config=bert_config,
      num_labels=len(label_list),
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size,
      predict_batch_size=FLAGS.predict_batch_size)

  if FLAGS.do_train:
    train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
    file_based_convert_examples_to_features(
        train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Num examples = %d", len(train_examples))
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info("  Num steps = %d", num_train_steps)
    train_input_fn = file_based_input_fn_builder(
        input_file=train_file,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

  if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
      # TPU requires a fixed batch size for all batches, therefore the number
      # of examples must be a multiple of the batch size, or else examples
      # will get dropped. So we pad with fake examples which are ignored
      # later on. These do NOT count towards the metric (all tf.metrics
      # support a per-instance weight, and these get a weight of 0.0).
      while len(eval_examples) % FLAGS.eval_batch_size != 0:
        eval_examples.append(PaddingInputExample())

    eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
    file_based_convert_examples_to_features(
        eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(eval_examples), num_actual_eval_examples,
                    len(eval_examples) - num_actual_eval_examples)
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
      assert len(eval_examples) % FLAGS.eval_batch_size == 0
      eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
        input_file=eval_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
      tf.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

  if FLAGS.do_predict:
    while True:
        try:
            test_sentence = input('input sentence: ')
            predict_examples = []
            guid = "test-1"
            label = "연기력"
            text_a = tokenization.convert_to_unicode(str(test_sentence))
            predict_examples.append(
                  InputExample(guid=guid, text_a=text_a, label=label))

            num_actual_predict_examples = len(predict_examples)
            if FLAGS.use_tpu:
              # TPU requires a fixed batch size for all batches, therefore the number
              # of examples must be a multiple of the batch size, or else examples
              # will get dropped. So we pad with fake examples which are ignored
              # later on.
              while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(PaddingInputExample())

            predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
            file_based_convert_examples_to_features(predict_examples, label_list,
                                                    FLAGS.max_seq_length, tokenizer,
                                                    predict_file)

            tf.logging.info("***** Running prediction*****")
            tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                            len(predict_examples), num_actual_predict_examples,
                            len(predict_examples) - num_actual_predict_examples)
            tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

            predict_drop_remainder = True if FLAGS.use_tpu else False
            predict_input_fn = file_based_input_fn_builder(
                input_file=predict_file,
                seq_length=FLAGS.max_seq_length,
                is_training=False,
                drop_remainder=predict_drop_remainder)

            result = estimator.predict(input_fn=predict_input_fn)

            for (i, prediction) in enumerate(result):
                label = prediction["probabilities"].tolist().index(max(prediction["probabilities"]))
                print(f'CATEGORY: {label_list[label]}    확률 :{prediction["probabilities"].tolist()[label]}')
                #print(prediction["probabilities"].tolist())
        except Exception as e:
            print(f'{type(e).__name__}: {" ".join(list(e.args))}')