Example #1
0
def reconstruct(sname, rot_center, ovlpfind, s_start, s_end):
    fname = dfolder + sname + '.h5'
    print(fname)
    start = s_start
    end = s_end
    chunks = 24
    num_sino = (end - start) // chunks
    for m in range(chunks):
        sino_start = start + num_sino * m
        sino_end = start + num_sino * (m + 1)
        start_read_time = time.time()
        proj, flat, dark, thetat = dxchange.read_aps_2bm(fname,
                                                         sino=(sino_start,
                                                               sino_end))
        print('   done read in %0.1f min' %
              ((time.time() - start_read_time) / 60))
        dark = proj[9001:9002]
        flat = proj[0:1]
        proj = proj[1:9000]
        theta = tomopy.angles(proj.shape[0], 0., 360.)
        proj = tomopy.sino_360_to_180(proj, overlap=ovlpfind, rotation='right')
        proj = tomopy.remove_outlier(proj, dif=0.4)
        proj = tomopy.normalize_bg(proj, air=10)
        proj = tomopy.minus_log(proj)
        center = rot_center
        start_ring_time = time.time()
        proj = tomopy.remove_stripe_fw(proj, wname='sym5', sigma=4, pad=False)
        proj = tomopy.remove_stripe_sf(proj, size=3)
        print('   done pre-process in %0.1f min' %
              ((time.time() - start_ring_time) / 60))
        start_phase_time = time.time()
        proj = tomopy.retrieve_phase(proj,
                                     pixel_size=detector_pixel_size_x,
                                     dist=sample_detector_distance,
                                     energy=energy,
                                     alpha=alpha,
                                     pad=True,
                                     ncore=None,
                                     nchunk=None)
        print('   done phase retrieval in %0.1f min' %
              ((time.time() - start_phase_time) / 60))
        start_recon_time = time.time()
        rec = tomopy.recon(proj,
                           theta,
                           center=center,
                           algorithm='gridrec',
                           filter_name='ramalk')
        tomopy.circ_mask(rec, axis=0, ratio=0.95)
        print("Reconstructed", rec.shape)
        dxchange.write_tiff_stack(rec,
                                  fname=dfolder + '/' + sname + '/' + sname,
                                  overwrite=True,
                                  start=sino_start)
        print('   Chunk reconstruction done in %0.1f min' %
              ((time.time() - start_recon_time) / 60))
    print("Done!")
Example #2
0
def rec_try(h5fname, nsino, rot_center, center_search_width, algorithm, binning):
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white
    
    data_shape = get_dx_dims(h5fname, 'data')
    print(data_shape)
    ssino = int(data_shape[1] * nsino)

    center_range = (rot_center-center_search_width, rot_center+center_search_width, 0.5)
    #print(sino,ssino, center_range)
    #print(center_range[0], center_range[1], center_range[2])

    # Select sinogram range to reconstruct
    sino = None
        
    start = ssino
    end = start + 1
    sino = (start, end)

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)

    # zinger_removal
    proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)
        
    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)


    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    stack = np.empty((len(np.arange(*center_range)), data_shape[0], data_shape[2]))

    index = 0
    for axis in np.arange(*center_range):
        stack[index] = data[:, 0, :]
        index = index + 1

    # Reconstruct the same slice with a range of centers.
    rec = tomopy.recon(stack, theta, center=np.arange(*center_range), sinogram_order=True, algorithm='gridrec', filter_name='parzen', nchunk=1)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    index = 0
    # Save images to a temporary folder.
    fname = os.path.dirname(h5fname) + '/' + 'try_rec/' + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]    
    for axis in np.arange(*center_range):
        rfname = fname + '_' + str('{0:.2f}'.format(axis) + '.tiff')
        dxchange.write_tiff(rec[index], fname=rfname, overwrite=True)
        index = index + 1

    print("Reconstructions: ", fname)
Example #3
0
def main(arg):

    fname = '/local/dataraid/elettra/Oak_16bit_slice343_all_repack.h5'
    
    # Read the hdf raw data.
    sino, sflat, sdark, th = dxchange.read_aps_32id(fname)

    slider(sino)

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(sino.shape[1], ang1=0.0, ang2=180.0)

    print(sino.shape, sdark.shape, sflat.shape, theta.shape)

    # Quick normalization just to see something ....
    ndata = sino / float(np.amax(sino))
    slider(ndata)

    # Find rotation center.
    rot_center = 962

    binning = 1
    ndata = tomopy.downsample(ndata, level=int(binning))
    rot_center = rot_center/np.power(2, float(binning))    

    ndata = tomopy.minus_log(ndata)
    
    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(ndata, theta, center=rot_center, sinogram_order=True, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
Example #4
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 3  # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 1.17e-4  # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    monochromator_energy = 22.7  # Energy of incident wave in keV
    alpha = 1e-02  # Phase retrieval coeff.
    zinger_level = 800  # Zinger level for projections
    zinger_level_w = 1000  # Zinger level for white

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)

    # zinger_removal
    proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    flat = tomopy.misc.corr.remove_outlier(flat,
                                           zinger_level_w,
                                           size=15,
                                           axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    ## data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    ##data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=150)

    # phase retrieval
    ##data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center / np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning)
    data = tomopy.downsample(data, level=binning, axis=1)

    # Reconstruct object.
    if algorithm == 'sirtfbp':
        rec = rec_sirtfbp(data, theta, rot_center)
    else:
        rec = tomopy.recon(data,
                           theta,
                           center=rot_center,
                           algorithm=algorithm,
                           filter_name='parzen')

    print("Algorithm: ", algorithm)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    return rec
Example #5
0
def recon_gridrec(sinogram, center, angles=None, ratio=1.0):
    """
    Wrapper of the gridrec method implemented in the tomopy package.
    https://tomopy.readthedocs.io/en/latest/api/tomopy.recon.algorithm.html

    Parameters
    ----------
    sinogram : array_like
        2D tomographic data.
    center : float
        Center of rotation.
    angles : float
        1D array. Tomographic angles in radian.
    ratio : float
        To apply a circle mask to the reconstructed image.

    Returns
    -------
    ndarray
        Square array.
    """
    (nrow, _) = sinogram.shape
    if angles is None:
        angles = np.linspace(0.0, 180.0, nrow) * np.pi / 180.0
    sinogram = np.expand_dims(sinogram, 1)
    recont = tomopy.recon(sinogram, angles, center=center, algorithm='gridrec')
    recont = tomopy.circ_mask(recont, axis=0, ratio=ratio)
    return recont[0]
Example #6
0
def _adjust_hist_limits(rec, mask, ratio):
    # Apply circular mask.
    if mask is True:
        rec = tomopy.circ_mask(rec, axis=0, ratio=ratio)

    # Adjust histogram boundaries according to reconstruction.
    return _adjust_hist_min(rec.min()), _adjust_hist_max(rec.max())
Example #7
0
def reconstruct_tomcat(proj, angle_offset, rot_center):
    theta = tomopy.angles(proj.shape[0]) + angle_offset
    recon = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')
    # rot_center = tomopy.find_center(proj, theta, init=882, ind=0, tol=0.5)
    print(f"Reconstruction shape: {recon.shape}")

    recon = tomopy.circ_mask(recon, axis=0, ratio=0.90)
    return recon
Example #8
0
def rec_try(h5fname, nsino, rot_center, center_search_width, algorithm, binning):
    
    data_shape = get_dx_dims(h5fname, 'data')
    print(data_shape)
    ssino = int(data_shape[1] * nsino)

    center_range = (rot_center-center_search_width, rot_center+center_search_width, 0.5)
    #print(sino,ssino, center_range)
    #print(center_range[0], center_range[1], center_range[2])

    # Select sinogram range to reconstruct
    sino = None
        
    start = ssino
    end = start + 1
    sino = (start, end)

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    # data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)


    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    stack = np.empty((len(np.arange(*center_range)), data_shape[0], data_shape[2]))

    index = 0
    for axis in np.arange(*center_range):
        stack[index] = data[:, 0, :]
        index = index + 1

    # Reconstruct the same slice with a range of centers.
    rec = tomopy.recon(stack, theta, center=np.arange(*center_range), sinogram_order=True, algorithm='gridrec', filter_name='parzen', nchunk=1)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    index = 0
    # Save images to a temporary folder.
    fname = os.path.dirname(h5fname) + os.sep + 'try_rec/' + path_base_name(h5fname) + os.sep + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]    
    for axis in np.arange(*center_range):
        rfname = fname + '_' + str('{0:.2f}'.format(axis) + '.tiff')
        dxchange.write_tiff(rec[index], fname=rfname, overwrite=True)
        index = index + 1

    print("Reconstructions: ", fname)
Example #9
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 8        # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 2.247e-4    # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    monochromator_energy = 24.9         # Energy of incident wave in keV
    alpha = 1e-02                       # Phase retrieval coeff.
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # zinger_removal
    # proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    # flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    # data = tomopy.remove_stripe_ti(data, alpha=1.5)
    # data = tomopy.remove_stripe_sf(data, size=150)

    # phase retrieval
    #data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center/np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning) 
    data = tomopy.downsample(data, level=binning, axis=1)

    # Reconstruct object.
    if algorithm == 'sirtfbp':
        rec = rec_sirtfbp(data, theta, rot_center)
    elif algorithm == 'astrasirt':
        extra_options ={'MinConstraint':0}
        options = {'proj_type':'cuda', 'method':'SIRT_CUDA', 'num_iter':200, 'extra_options':extra_options}
        rec = tomopy.recon(data, theta, center=rot_center, algorithm=tomopy.astra, options=options)
    else:
        rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
        
    print("Algorithm: ", algorithm)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    
    return rec
Example #10
0
def main():

    # file_name = '/local/data/2020-02/Stock/100_B949_81_84_B2.h5'
    file_name = '/local/data/tomo_00001.h5'

    data_size = get_dx_dims(file_name)

    ssino = int(data_size[1] * 0.5)
    detector_center = int(data_size[2] * 0.5)

    # Select sinogram range to reconstruct
    sino_start = ssino
    sino_end = sino_start + 1

    sino = (int(sino_start), int(sino_end))


    # Read APS 2-BM raw data
    proj, flat, dark, theta = dxchange.read_aps_32id(file_name, sino=sino)

    tomo_ind = tomopy.normalize(proj, flat, dark)

    # data = tomopy.normalize_bg(proj, air=10)
    tomo_ind = tomopy.minus_log(tomo_ind)


    rec = recon(tomo_ind, theta, center=detector_center, sinogram_order=False,
                algorithm='gridrec', filter_name='shepp')
    rec = circ_mask(rec, axis=0)

    # tomopy score, simplified rescaling of histogram bounds 
    hmin, hmax = _adjust_hist_limits(
        tomo_ind, theta, mask=True, sinogram_order=False)

    print(hmin, hmax)

    print(find_center(tomo_ind, theta))

    centers = np.linspace(-25, 25, 101) + detector_center
    print(centers)

    tpscore = []
    blur = []
    for center in centers:
        val, bval = _find_center_cost(
                    center, tomo_ind, theta, hmin, hmax, mask=True, ratio=1.,
                    sinogram_order=False)
        tpscore.append(val)
        blur.append(bval)

    plt.plot(centers, rescale(tpscore), label='tomopy score')
    plt.plot(centers, rescale(blur), label='blurriness')
    plt.legend()
    plt.title('centering scores')
    plt.xlabel('center')
    plt.show()
Example #11
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 8        # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 2.247e-4    # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    monochromator_energy = 24.9         # Energy of incident wave in keV
    alpha = 1e-02                       # Phase retrieval coeff.
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white

    # h5fname_norm = '/local/data/2019-02/Burke/C47M_0015.h5'
    h5fname_norm = '/local/data/2019-02/Burke/kc78_Menardii_0003.h5'
    proj1, flat, dark, theta1 = dxchange.read_aps_32id(h5fname_norm, sino=sino)
    proj, dummy, dummy1, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # zinger_removal
    proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    #data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=20)

    # phase retrieval
    #data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center/np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning) 
    data = tomopy.downsample(data, level=binning, axis=1)

    # Reconstruct object.
    if algorithm == 'sirtfbp':
        rec = rec_sirtfbp(data, theta, rot_center)
    else:
        rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
        
    print("Algorithm: ", algorithm)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    
    return rec
Example #12
0
def reconstruct(h5fname, sino, rot_center, args, blocked_views=None):

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)

    # Manage the missing angles:
    if blocked_views is not None:
        print("Blocked Views: ", blocked_views)
        proj = np.concatenate((proj[0:blocked_views[0], :, :],
                               proj[blocked_views[1] + 1:-1, :, :]),
                              axis=0)
        theta = np.concatenate(
            (theta[0:blocked_views[0]], theta[blocked_views[1] + 1:-1]))

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,
                                   level=7,
                                   wname='sym16',
                                   sigma=1,
                                   pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    algorithm = args.algorithm
    ncores = args.ncores
    nitr = args.num_iter

    # always add algorithm
    _kwargs = {"algorithm": algorithm}

    # assign number of cores
    _kwargs["ncore"] = ncores

    # don't assign "num_iter" if gridrec or fbp
    if algorithm not in ["fbp", "gridrec"]:
        _kwargs["num_iter"] = nitr

    # Reconstruct object.
    with timemory.util.auto_timer(
            "[tomopy.recon(algorithm='{}')]".format(algorithm)):
        rec = tomopy.recon(proj, theta, **_kwargs)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    return rec
Example #13
0
def main(arg):

    parser = argparse.ArgumentParser()
    parser.add_argument("top", help="top directory where the tiff images are located: /data/")
    parser.add_argument("start", nargs='?', const=1, type=int, default=1, help="index of the first image: 1000 (default 1)")

    args = parser.parse_args()

    top = args.top
    index_start = int(args.start)

    template = os.listdir(top)[0]

    nfile = len(fnmatch.filter(os.listdir(top), '*.tif'))
    index_end = index_start + nfile
    ind_tomo = range(index_start, index_end)
    
    fname = top + template

    print (nfile, index_start, index_end, fname)


    # Select the sinogram range to reconstruct.
    start = 0
    end = 512
    sino=(start, end)

    # Read the tiff raw data.
    ndata = dxchange.read_tiff_stack(fname, ind=ind_tomo, slc=(sino, None))

    print(ndata.shape)
    binning = 8
    ndata = tomopy.downsample(ndata, level=binning, axis=1)
    print(ndata.shape)
    
    # Normalize to 1 using the air counts
    ndata = tomopy.normalize_bg(ndata, air=5)

    ## slider(ndata)

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(ndata.shape[0])
   
    rot_center = 960
    print("Center of rotation: ", rot_center)

    ndata = tomopy.minus_log(ndata)

    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(ndata, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='/local/dataraid/mark/rec/recon')
Example #14
0
 def reconstruct(self, sino, cors, angles, vol_shape, init):
     recon = tomopy.recon(sino,
                          np.deg2rad(angles),
                          center=cors[0],
                          ncore=1,
                          algorithm=self.alg,
                          init_recon=init,
                          **self.kwargs)
     recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
     return np.transpose(recon, (1, 0, 2))
Example #15
0
	def save_reconstruction(self, recon, savedir = None, index=-1):
		try:
			if savedir == "":
				raise IOError
			if savedir == None:
				savedir = QtGui.QFileDialog.getSaveFileName()[0]
			if index == -1:
				recon = tomopy.circ_mask(recon, axis=0)
				dxchange.writer.write_tiff_stack(recon, fname=savedir)
			if index != -1:
				recon = tomopy.circ_mask(recon, axis=0)
				indx = "0000"
				recon_index = indx[:-len(str(index))]+str(index)
				io.imsave(savedir+"_"+str(recon_index)+".tif", recon[0])
			return
		except IOError:
			print("type the header name")
		except: 
			print("Something went horribly wrong.")
Example #16
0
def recon_wrapper(projs,
                  beam,
                  theta,
                  pad_frac=0.8,
                  mask_ratio=0.95,
                  contrast_s=0.001):
    '''
    Do a reconstruction with gridrec.  
    
    Parameters
    ----------
    projs : np.array  
        a stack of radiographs (sinogram order input to tomopy recon is False)  
        
    theta : tuple  
        The tuple must be defined as (starting_theta, ending_theta, number_projections). The angle is intepreted as degrees.  
    
    beam : np.array  
        The flat-field (beam array) must be provided with shape (1, nrows, ncols).  
        
    pad_frac : float  
        Fraction of padding applied to rows (e.g. pad_frac = 0.8 on 1000 rows adds 800 pixels to either side.  
        
    mask_ratio : float  
        ratio between (0,1) for applying circular mask on reconstruction (typical value 0.9 to 1.0).  
        
    '''

    # make theta array in radians
    theta = np.linspace(*theta, endpoint=True)
    theta = np.radians(theta)

    projs = normalize(projs, beam, 1.0e-6 * np.zeros(beam.shape))
    projs = minus_log(projs)

    pad_w = int(pad_frac * projs.shape[-1])
    projs = np.pad(projs, ((0, 0), (0, 0), (pad_w, pad_w)),
                   mode="constant",
                   constant_values=0.0)
    rec = recon(projs, theta = theta, \
                  center = projs.shape[-1]//2, \
                  algorithm = 'gridrec', \
                  sinogram_order = False)
    rec = rec[:, pad_w:-pad_w, pad_w:-pad_w]
    rec = circ_mask(rec, 0, ratio=mask_ratio)
    mask_val = rec[int(rec.shape[0] // 2), 0, 0]
    vcrop = int(rec.shape[0] * (1 - mask_ratio))
    rec[0:vcrop, ...] = mask_val
    rec[-vcrop:, ...] = mask_val

    if contrast_s > 0.0:
        h = modified_autocontrast(rec, s=contrast_s)
        rec = np.clip(rec, *h)

    return rec
Example #17
0
    def save_reconstruction(self, recon):
        try:
            savedir = QtGui.QFileDialog.getSaveFileName()[0]

            if savedir == "":
                raise IndexError
            recon = tomopy.circ_mask(recon, axis=0)
            dxchange.writer.write_tiff_stack(recon, fname=savedir)
        except IndexError:
            print("type the header name")
        return
Example #18
0
def reconstruct(h5fname, sino, rot_center, args, blocked_views=None):

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)

    # Manage the missing angles:
    if blocked_views is not None:
        print("Blocked Views: ", blocked_views)
        proj = np.concatenate((proj[0:blocked_views[0], :, :],
                               proj[blocked_views[1]+1:-1, :, :]), axis=0)
        theta = np.concatenate((theta[0:blocked_views[0]],
                                theta[blocked_views[1]+1: -1]))

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data, level=7, wname='sym16', sigma=1,
                                   pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    algorithm = args.algorithm
    ncores = args.ncores
    nitr = args.num_iter

    # always add algorithm
    _kwargs = {"algorithm": algorithm}

    # assign number of cores
    _kwargs["ncore"] = ncores

    # don't assign "num_iter" if gridrec or fbp
    if algorithm not in ["fbp", "gridrec"]:
        _kwargs["num_iter"] = nitr

    # Reconstruct object.
    with timemory.util.auto_timer(
        "[tomopy.recon(algorithm='{}')]".format(algorithm)):
        rec = tomopy.recon(proj, theta, **_kwargs)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    return rec
Example #19
0
	def save_reconstruction(self, recon, savedir=None):
		try:
			if savedir == "":
				raise IOError
			if savedir == None:
				savedir = QtGui.QFileDialog.getSaveFileName()[0]
			recon = tomopy.circ_mask(recon, axis=0)
			dxchange.writer.write_tiff_stack(recon, fname=savedir)
			return
		except IOError:
			print("type the header name")
		except: 
			print("Something went horribly wrong.")
Example #20
0
def _adjust_hist_limits(tomo_ind, theta, mask, sinogram_order):
    # Make an initial reconstruction to adjust histogram limits.
    rec = recon(tomo_ind,
                theta,
                sinogram_order=sinogram_order,
                algorithm='gridrec')

    # Apply circular mask.
    if mask is True:
        rec = circ_mask(rec, axis=0)

    # Adjust histogram boundaries according to reconstruction.
    return _adjust_hist_min(rec.min()), _adjust_hist_max(rec.max())
Example #21
0
def mask(data, params):
    log.info("  *** mask")
    if(params.reconstruction_mask):
        log.info('  *** *** ON')
        if 0 < params.reconstruction_mask_ratio <= 1:
            log.warning("  *** mask ratio: %f " % params.reconstruction_mask_ratio)
            data = tomopy.circ_mask(data, axis=0, ratio=params.reconstruction_mask_ratio)
            log.info('  *** masking finished')
        else:
            log.error("  *** mask ratio must be between 0-1: %f is ignored" % params.reconstruction_mask_ratio)
    else:
        log.warning('  *** *** OFF')
    return data
Example #22
0
def main(arg):

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "top", help="top directory where the tiff images are located: /data/")
    parser.add_argument("start",
                        nargs='?',
                        const=1,
                        type=int,
                        default=1,
                        help="index of the first image: 1000 (default 1)")

    args = parser.parse_args()

    top = args.top
    index_start = int(args.start)

    template = os.listdir(top)[0]

    nfile = len(fnmatch.filter(os.listdir(top), '*.tiff'))
    index_end = index_start + nfile
    ind_tomo = range(index_start, index_end)

    fname = top + template

    print(nfile, index_start, index_end, fname)

    # Select the sinogram range to reconstruct.
    start = 70
    end = 72
    sino = (start, end)

    # Read the tiff raw data.
    ndata = dxchange.read_tiff_stack(fname, ind=ind_tomo, slc=(sino, None))

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(ndata.shape[0])

    rot_center = 251
    print("Center of rotation: ", rot_center)

    #ndata = tomopy.minus_log(ndata)

    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(ndata, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='/local/dataraid/mark/rec/recon')
Example #23
0
	def save_recon_2npy(self,recon, savedir=None, index=-1):
		try:
			if savedir == "":
				raise IOError
			if savedir == None:
				savedir = QtGui.QFileDialog.getSaveFileName()[0]
			if index == -1:
				recon = tomopy.circ_mask(recon, axis=0)
				np.save(savedir, recon)
			return
		except IOError:
			print("type the header name")
		except:
			print("Something went horribly wrong.")
Example #24
0
def _center_resid_blur(center, sino, omega, rmin, rmax, sinogram_order=True):
    """
    Cost function used for the ``find_center`` routine.
    """
    rec = tomopy.recon(sino,
                       omega,
                       center,
                       sinogram_order=sinogram_order,
                       algorithm='gridrec',
                       filter_name='shepp')
    rec = tomopy.circ_mask(rec, axis=0)
    score = -((rec - rec.mean())**2).sum()
    logger.info("blur center = %.4f  %.4f" % (center, score))
    return score
Example #25
0
def reconstruct(sname, rot_center, ovlpfind, s_start, s_end):
    fname = dfolder + sname + '.h5'
    print (fname)
    start = s_start  
    end =   s_end
    chunks = 24 
    num_sino = (end - start) // chunks
    for m in range(chunks):
        sino_start = start + num_sino * m
        sino_end = start + num_sino * (m + 1)
        start_read_time = time.time()
        proj, flat, dark, thetat = dxchange.read_aps_2bm(fname, sino=(sino_start, sino_end))
        print('   done read in %0.1f min' % ((time.time() - start_read_time)/60))
        dark = proj[9001:9002]
        flat = proj[0:1]
        proj = proj[1:9000]
        theta = tomopy.angles(proj.shape[0], 0., 360.)
        proj = tomopy.sino_360_to_180(proj, overlap=ovlpfind, rotation='right')
        proj = tomopy.remove_outlier(proj, dif=0.4)
        proj = tomopy.normalize_bg(proj, air=10)
        proj = tomopy.minus_log(proj)
        center = rot_center
        start_ring_time = time.time()
        proj = tomopy.remove_stripe_fw(proj, wname='sym5', sigma=4, pad=False)
        proj = tomopy.remove_stripe_sf(proj, size=3)
        print('   done pre-process in %0.1f min' % ((time.time() - start_ring_time)/60))
        start_phase_time = time.time()
        proj = tomopy.retrieve_phase(proj, pixel_size=detector_pixel_size_x, dist=sample_detector_distance, energy=energy, alpha=alpha, pad=True, ncore=None, nchunk=None)
        print('   done phase retrieval in %0.1f min' % ((time.time() - start_phase_time)/60))
        start_recon_time = time.time()
        rec = tomopy.recon(proj, theta, center=center, algorithm='gridrec', filter_name='ramalk')
        tomopy.circ_mask(rec, axis=0, ratio=0.95)
        print ("Reconstructed", rec.shape)
        dxchange.write_tiff_stack(rec, fname = dfolder + '/' + sname + '/' + sname, overwrite=True, start=sino_start)
        print('   Chunk reconstruction done in %0.1f min' % ((time.time() - start_recon_time)/60))
    print ("Done!")
def img_variance(img):
    import tomopy

    s = img.shape
    variance = np.zeros(s[0])
    img = tomopy.circ_mask(img, axis=0, ratio=0.8)
    for i in range(s[0]):
        img[i] = medfilt2d(img[i], 5)
        img_ = img[i].flatten()
        t = img_ > 0
        img_ = img_[t]
        t = np.mean(img_)
        variance[i] = np.sqrt(
            np.sum(np.power(np.abs(img_ - t), 2)) / len(img_ - 1))
    return variance
Example #27
0
def recon_hdf5_mpi(src_fanme, dest_folder, sino_range, sino_step, center_vec, shift_grid, dtype='float32',
               algorithm='gridrec', tolerance=1, save_sino=False, sino_blur=None, **kwargs):
    """
    Reconstruct a single tile, or fused HDF5 created using util/total_fusion. MPI supported.
    """

    raise DeprecationWarning

    if rank == 0:
        if not os.path.exists(dest_folder):
            os.mkdir(dest_folder)
    sino_ini = int(sino_range[0])
    sino_end = int(sino_range[1])
    f = h5py.File(src_fanme)
    dset = f['exchange/data']
    full_shape = dset.shape
    theta = tomopy.angles(full_shape[0])
    center_vec = np.asarray(center_vec)
    sino_ls = np.arange(sino_ini, sino_end, sino_step, dtype='int')
    grid_bins = np.ceil(shift_grid[:, 0, 0])

    t0 = time.time()
    alloc_set = allocate_mpi_subsets(sino_ls.size, size, task_list=sino_ls)
    for slice in alloc_set[rank]:
        print('    Rank {:d}: reconstructing {:d}'.format(rank, slice))
        grid_line = np.digitize(slice, grid_bins)
        grid_line = grid_line - 1
        center = center_vec[grid_line]
        data = dset[:, slice, :]
        if sino_blur is not None:
            data = gaussian_filter(data, sino_blur)
        data = data.reshape([full_shape[0], 1, full_shape[2]])
        data[np.isnan(data)] = 0
        data = data.astype('float32')
        if save_sino:
            dxchange.write_tiff(data[:, slice, :], fname=os.path.join(dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(slice, center))
        # data = tomopy.remove_stripe_ti(data)
        rec = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
        # rec = tomopy.remove_ring(rec)
        rec = tomopy.remove_outlier(rec, tolerance)
        rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
        dxchange.write_tiff(rec, fname='{:s}/recon/recon_{:05d}_{:d}'.format(dest_folder, slice, center), dtype=dtype)

    print('Rank {:d} finished in {:.2f} s.'.format(rank, time.time()-t0))
    return
Example #28
0
def rec(data, rot_center):
    """
    Reconstruct with Gridrec.
    """

    [nframes, nproj, ns, n] = data.shape
    theta = np.linspace(0, np.pi * nframes, nproj * nframes, endpoint=False)
    # Reconstruct object. FBP.
    rec = np.zeros([nframes, ns, n, n], dtype='float32')
    for time_frame in range(0, nframes):
        rec0 = tomopy.recon(data[time_frame],
                            theta[time_frame * nproj:(time_frame + 1) * nproj],
                            center=rot_center,
                            algorithm='gridrec')
        # Mask each reconstructed slice with a circle.
        rec[time_frame] = tomopy.circ_mask(rec0, axis=0, ratio=0.95)

    return rec
Example #29
0
def _find_center_cost(center, recon_function, hmin, hmax, mask, ratio, cache):
    """
    Cost function used for the ``find_center`` routine.
    """
    logger.info('Trying rotation center: %s', center)
    center = np.array(center, dtype='float32')
    if float(center) in cache:
        logger.info("Using cached value for center: %s", center)
        return cache[float(center)]
    rec = recon_function(center)

    if mask is True:
        rec = tomopy.circ_mask(rec, axis=0, ratio=ratio)

    hist, _ = np.histogram(rec, bins=64, range=[hmin, hmax])
    hist = hist.astype('float32') / rec.size + 1e-12
    val = -np.dot(hist, np.log2(hist))
    logger.info("Function value = %f", val)
    cache[float(center)] = val
    return val
Example #30
0
def _center_resid_negent(center, sino, omega, rmin, rmax, sinogram_order=True):
    """
    Cost function used for the ``find_center`` routine.
    """
    _, nang, nx = sino.shape
    if center < 1:
        return 10 * (1 - center)
    if center > nx - 2:
        return 10 * (center - nx + 2)
    n1 = int(nx / 4.0)
    n2 = int(3 * nx / 4.0)
    rec = tomopy.recon(sino,
                       omega,
                       center,
                       algorithm='gridrec',
                       sinogram_order=sinogram_order)
    rec = tomopy.circ_mask(rec, axis=0)[:, n1:n2, n1:n2]
    hist, e = np.histogram(rec, bins=64, range=[rmin, rmax])
    hist = hist / rec.size
    score = -np.dot(hist, np.log(1.e-12 + hist))
    logger.info("negent center = %.4f  %.4f" % (center, score))
    return score
Example #31
0
def main(arg):

    fname = '/local/dataraid/elettra/Oak_16bit_slice343_all_repack.h5'

    # Read the hdf raw data.
    sino, sflat, sdark, th = dxchange.read_aps_32id(fname)

    slider(sino)
    proj = np.swapaxes(sino, 0, 1)
    flat = np.swapaxes(sflat, 0, 1)
    dark = np.swapaxes(sdark, 0, 1)

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(proj.shape[0], ang1=0.0, ang2=180.0)

    print(proj.shape, dark.shape, flat.shape, theta.shape)

    # Flat-field correction of raw data.
    ndata = tomopy.normalize(proj, flat, dark)
    #slider(ndata)

    # Find rotation center.
    rot_center = 962

    binning = 1
    ndata = tomopy.downsample(ndata, level=int(binning))
    rot_center = rot_center / np.power(2, float(binning))

    ndata = tomopy.minus_log(ndata)

    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(ndata, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
Example #32
0
def rec_tv(data, m, nsp, rot_center, lambda0, lambda1, niters, ngpus):
    """
    Reconstruct. Time-domain decomposition + regularization.
    """

    [nframes, nproj, ns, n] = data.shape

    # cut data according to the rotation center
    if (rot_center < n // 2):
        data = data[:, :, :, :n // 2 + rot_center - 1]
    if (rot_center > n // 2):
        data = data[:, :, :, rot_center - n // 2:]
    n = data.shape[3]

    # reorder input data for compatibility
    data = np.reshape(data, [nframes * nproj, ns, n])
    data = np.ndarray.flatten(data.swapaxes(0, 1))

    # memory for result
    rec = np.zeros([n * n * ns * m], dtype='float32')

    # Make a class for tv
    cl = rectv.rectv(n, nframes * nproj, m, nframes, ns, ns, ngpus, lambda0,
                     lambda1)
    # Run iterations
    cl.itertvR_wrap(rec, data, niters)

    # reorder result for compatibility with tomopy
    rec = np.rot90(np.reshape(rec, [ns, m, n, n]).swapaxes(0, 1),
                   axes=(2, 3)) / nproj * 2

    # take slices corresponding to angles k\pi
    rec = rec[::m // nframes]
    for time_frame in range(0, nframes):
        # Mask each reconstructed slice with a circle.
        rec[time_frame] = tomopy.circ_mask(rec[time_frame], axis=0, ratio=0.95)

    return rec
Example #33
0
def main(arg):

    fname = '/local/dataraid/elettra/Oak_16bit_slice343_all_repack.h5'
    
    # Read the hdf raw data.
    sino, sflat, sdark, th = dxchange.read_aps_32id(fname)

    slider(sino)
    proj = np.swapaxes(sino,0,1)
    flat = np.swapaxes(sflat,0,1)
    dark = np.swapaxes(sdark,0,1)

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(proj.shape[0], ang1=0.0, ang2=180.0)

    print(proj.shape, dark.shape, flat.shape, theta.shape)

    # Flat-field correction of raw data.
    ndata = tomopy.normalize(proj, flat, dark)
    #slider(ndata)

    # Find rotation center.
    rot_center = 962

    binning = 1
    ndata = tomopy.downsample(ndata, level=int(binning))
    rot_center = rot_center/np.power(2, float(binning))    

    ndata = tomopy.minus_log(ndata)
    
    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(ndata, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
Example #34
0
def find_tomo_center(sino, omega, center=None, sinogram_order=True):

    xmax = sino.shape[0]
    if sinogram_order:
        xmax = sino.shape[1]
    if center is None:
        center = xmax / 2.0

    # init center to scale recon
    rec = tomopy.recon(sino,
                       omega,
                       center=center,
                       sinogram_order=sinogram_order,
                       algorithm='gridrec',
                       filter_name='shepp')
    rec = tomopy.circ_mask(rec, axis=0)

    # tomopy score, tweaked slightly
    rmin, rmax = rec.min(), rec.max()
    rmin -= 0.5 * (rmax - rmin)
    rmax += 0.5 * (rmax - rmin)

    out = minimize(_center_resid_negent,
                   center,
                   args=(sino, omega, rmin, rmax, sinogram_order),
                   method='Nelder-Mead',
                   tol=1.5)

    cen = out.x
    if cen > 0 and cen < xmax:
        out = minimize(_center_resid_blur,
                       cen,
                       args=(sino, omega, rmin, rmax, sinogram_order),
                       method='Nelder-Mead',
                       tol=0.5)
        cen = out.x
    return cen
Example #35
0
def reconstruct(h5fname, sino, rot_center, blocked_views=None):

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # Manage the missing angles:
    if blocked_views is not None:
        print("Blocked Views: ", blocked_views)
        proj = np.concatenate((proj[0:blocked_views[0],:,:], proj[blocked_views[1]+1:-1,:,:]), axis=0)
        theta = np.concatenate((theta[0:blocked_views[0]], theta[blocked_views[1]+1:-1]))

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    # # phase retrieval
    # data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=8e-3,pad=True)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    # Reconstruct object.
    rec = tomopy.recon(data, theta, center=rot_center, algorithm='gridrec')
        
    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    
    return rec
Example #36
0
def _find_center_cost(
        center, tomo_ind, theta, hmin, hmax, mask, ratio,
        sinogram_order=False):
    """
    Cost function used for the ``find_center`` routine.
    """
    center = np.array(center, dtype='float32')

    rec = recon(
        tomo_ind, theta, center,
        sinogram_order=sinogram_order,
        algorithm='gridrec',
        filter_name='shepp')

    if mask is True:
        rec = circ_mask(rec, axis=0)

    hist, e = np.histogram(rec, bins=64, range=[hmin, hmax])
    hist = hist.astype('float32') / rec.size + 1e-12
    val = -np.dot(hist, np.log2(hist))
    # from Matt
    bval = -((rec - rec.mean())**2).sum()

    return val, bval
Example #37
0
def recon_hdf5(src_fanme, dest_folder, sino_range, sino_step, shift_grid, center_vec=None, center_eq=None, dtype='float32',
               algorithm='gridrec', tolerance=1, chunk_size=20, save_sino=False, sino_blur=None, flattened_radius=120,
               mode='180', test_mode=False, phase_retrieval=None, ring_removal=True, **kwargs):
    """
    center_eq: a and b parameters in fitted center position equation center = a*slice + b.
    """

    if not os.path.exists(dest_folder):
        try:
            os.mkdir(dest_folder)
        except:
            pass
    sino_ini = int(sino_range[0])
    sino_end = int(sino_range[1])
    sino_ls_all = np.arange(sino_ini, sino_end, sino_step, dtype='int')
    alloc_set = allocate_mpi_subsets(sino_ls_all.size, size, task_list=sino_ls_all)
    sino_ls = alloc_set[rank]

    # prepare metadata
    f = h5py.File(src_fanme)
    dset = f['exchange/data']
    full_shape = dset.shape
    theta = tomopy.angles(full_shape[0])
    if center_eq is not None:
        a, b = center_eq
        center_ls = sino_ls * a + b
        center_ls = np.round(center_ls)
        for iblock in range(int(sino_ls.size/chunk_size)+1):
            print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            istart = iblock*chunk_size
            iend = np.min([(iblock+1)*chunk_size, sino_ls.size])
            fstart = sino_ls[istart]
            fend = sino_ls[iend]
            center = center_ls[istart:iend]
            data = dset[:, fstart:fend:sino_step, :]
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            data = tomopy.remove_stripe_ti(data, alpha=4)
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            rec = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
            rec = tomopy.remove_ring(rec)
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
            for i in range(rec.shape[0]):
                slice = fstart + i*sino_step
                dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}_{:05d}.tiff').format(slice, sino_ini))
                if save_sino:
                    dxchange.write_tiff(data[:, i, :], fname=os.path.join(dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(slice, int(center[i])))
            iblock += 1
            print('Block {:d} finished in {:.2f} s.'.format(iblock, time.time()-t0))
    else:
        # divide chunks
        grid_bins = np.append(np.ceil(shift_grid[:, 0, 0]), full_shape[1])
        chunks = []
        center_ls = []
        istart = 0
        counter = 0
        # irow should be 0 for slice 0
        irow = np.searchsorted(grid_bins, sino_ls[0], side='right')-1

        for i in range(sino_ls.size):
            counter += 1
            sino_next = i+1 if i != sino_ls.size-1 else i
            if counter >= chunk_size or sino_ls[sino_next] >= grid_bins[irow+1] or sino_next == i:
                iend = i+1
                chunks.append((istart, iend))
                istart = iend
                center_ls.append(center_vec[irow])
                if sino_ls[sino_next] >= grid_bins[irow+1]:
                    irow += 1
                counter = 0

        # reconstruct chunks
        iblock = 1
        for (istart, iend), center in izip(chunks, center_ls):
            print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            fstart = sino_ls[istart]
            fend = sino_ls[iend-1]
            print('Reading data...')
            data = dset[:, fstart:fend+1:sino_step, :]
            if mode == '360':
                overlap = 2 * (dset.shape[2] - center)
                data = tomosaic.morph.sino_360_to_180(data, overlap=overlap, rotation='right')
                theta = tomopy.angles(data.shape[0])
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            if ring_removal:
                data = tomopy.remove_stripe_ti(data, alpha=4)
                if phase_retrieval:
                    data = tomopy.retrieve_phase(data, kwargs['pixel_size'], kwargs['dist'], kwargs['energy'],
                                                 kwargs['alpha'])
                rec0 = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
                rec = tomopy.remove_ring(np.copy(rec0))
                cent = int((rec.shape[1]-1) / 2)
                xx, yy = np.meshgrid(np.arange(rec.shape[2]), np.arange(rec.shape[1]))
                mask0 = ((xx-cent)**2+(yy-cent)**2 <= flattened_radius**2)
                mask = np.zeros(rec.shape, dtype='bool')
                for i in range(mask.shape[0]):
                    mask[i, :, :] = mask0
                rec[mask] = (rec[mask] + rec0[mask])/2
            else:
                rec = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

            for i in range(rec.shape[0]):
                slice = fstart + i*sino_step
                if test_mode:
                    dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}_{:d}.tiff').format(slice, center), dtype=dtype)
                else:
                    dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}.tiff').format(slice), dtype=dtype)
                if save_sino:
                    dxchange.write_tiff(data[:, i, :], fname=os.path.join(dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(slice, center), dtype=dtype)
            print('Block {:d} finished in {:.2f} s.'.format(iblock, time.time()-t0))
            iblock += 1
    return
Example #38
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 31      # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 1.17e-4    # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    monochromator_energy = 65    # Energy of incident wave in keV
    # used pink beam

    alpha = 4*1e-4                       # Phase retrieval coeff.
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white

    # Read APS 2-BM raw data.
    # DIMAX saves 3 files: proj, flat, dark
    # when loading the data set select the proj file (larger size)

    fname = os.path.splitext(h5fname)[0]    
 
    fbase = fname.rsplit('_', 1)[0]
    fnum = fname.rsplit('_', 1)[1]
    fext = os.path.splitext(h5fname)[1]  

    fnum_flat = str("%4.4d" % (int(fnum)+1))
    fnum_dark = str("%4.4d" % (int(fnum)+2))

    fnproj = fbase + '_' + fnum + fext
    fnflat = fbase + '_' + fnum_flat + fext
    fndark = fbase + '_' + fnum_dark + fext
    
    print('proj', fnproj)
    print('flat', fnflat)
    print('dark', fndark)
    # Read APS 2-BM DIMAX raw data.
    proj, dum, dum2, theta = dxchange.read_aps_32id(fnproj, sino=sino)
    dum3, flat, dum4, dum5 = dxchange.read_aps_32id(fnflat, sino=sino)
    #flat, dum3, dum4, dum5 = dxchange.read_aps_32id(fnflat, sino=sino)          
    dum6, dum7, dark, dum8 = dxchange.read_aps_32id(fndark, sino=sino)

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)        
    
    # zinger_removal
    proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    #data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    #data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=150)

    # phase retrieval
    #data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center/np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning) 
    data = tomopy.downsample(data, level=binning, axis=1)

    # padding 
    N = data.shape[2]
    data_pad = np.zeros([data.shape[0],data.shape[1],3*N//2],dtype = "float32")
    data_pad[:,:,N//4:5*N//4] = data
    data_pad[:,:,0:N//4] = np.tile(np.reshape(data[:,:,0],[data.shape[0],data.shape[1],1]),(1,1,N//4))
    data_pad[:,:,5*N//4:] = np.tile(np.reshape(data[:,:,-1],[data.shape[0],data.shape[1],1]),(1,1,N//4))

    data = data_pad
    rot_center = rot_center+N//4

    nframes = 8 
    nproj = 1500
    theta = np.linspace(0, np.pi*nframes, nproj*nframes, endpoint=False)
    rec = np.zeros(
            (nframes, data.shape[1], data.shape[2], data.shape[2]), dtype='float32')
    for time_frame in range(0, nframes):
        rec0 = tomopy.recon(data[time_frame*nproj:(time_frame+1)*nproj], theta[time_frame*nproj:(
               time_frame+1)*nproj], center=rot_center, algorithm='gridrec')
        # Mask each reconstructed slice with a circle.
        rec[time_frame] = tomopy.circ_mask(rec0, axis=0, ratio=0.95)
    rec = rec[:,:,N//4:5*N//4,N//4:5*N//4]

        
    print("Algorithm: ", algorithm)
    
    return rec
Example #39
0
	inputPath = '{}_{:d}{}'.format(fn,y,fileextension)
	tomo[y] = dxchange.reader.read_tiff(inputPath,slc = (sinoused, raysused))

print('loading flat images')
for y in range(0,len(floc)):
	inputPath = '{}{}_{:d}{}'.format(fn,flatextension,floc[y],fileextension)
	flat[y] = dxchange.reader.read_tiff(inputPath,slc = (sinoused, raysused))

print('loading dark images')
for y in range(0,numdrk):
	inputPath = '{}{}_{:d}{}'.format(fn,darkextension,y,fileextension)
	dark[y] = dxchange.reader.read_tiff(inputPath,slc = (sinoused, raysused))	
	
print('normalizing')
tomo = tomo.astype(np.float32)
tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo)

tomopy.minus_log(tomo, out=tomo)

tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')
rec = tomopy.recon(tomo, tomopy.angles(numangles, angle_offset, angle_offset-angularrange), center=cor+npad, algorithm='gridrec', filter_name='butterworth', filter_par=[.25, 2])
rec = rec[:, npad:-npad, npad:-npad]
rec /= pxsize  # convert reconstructed voxel values from 1/pixel to 1/cm
rec = tomopy.circ_mask(rec, 0)



print('writing recon')
dxchange.write_tiff_stack(rec, fname='rec/'+fn, start=sinoused[0])

def reconstruct(filename,inputPath="", outputPath="", COR=COR, doOutliers=doOutliers, outlier_diff=outlier_diff, outlier_size=outlier_size, doFWringremoval=doFWringremoval, ringSigma=ringSigma,ringLevel=ringLevel, ringWavelet=ringWavelet,pad_sino=pad_sino,  doPhaseRetrieval=doPhaseRetrieval, propagation_dist=propagation_dist, kev=kev,alphaReg=alphaReg, butterworthpars=butterworthpars, doPolarRing=doPolarRing,Rarc=Rarc, Rmaxwidth=Rmaxwidth, Rtmax=Rtmax, Rthr=Rthr, Rtmin=Rtmin, useAutoCOR=useAutoCOR, use360to180=use360to180, num_substacks=num_substacks,recon_slice=recon_slice):

	# Convert filename to list type if only one file name is given
	if type(filename) != list:
		filename=[filename]

	# If useAutoCor == true, a list of COR will be automatically calculated for all files
	# If a list of COR is given, only entries with boolean False will use automatic COR calculation
	if useAutoCOR==True or (len(COR) != len(filename)):
		logging.info('using auto COR for all input files')
		COR = [False]*len(filename)

	for x in range(len(filename)):
		logging.info('opening data set, checking metadata')

		fdata, gdata = read_als_832h5_metadata(inputPath[x]+filename[x]+'.h5')
		pxsize = float(gdata['pxsize'])/10.0 # convert from metadata (mm) to this script (cm)
		numslices = int(gdata['nslices'])

		# recon_slice == True, only center slice will be reconstructed
		# if integer is given, a specific 		
		if recon_slice != False:
			if (type(recon_slice) == int) and (recon_slice <= numslices):
				sinorange [recon_slice-1, recon_slice]
			else:
				sinorange = [numslices//2-1, numslices//2]
		else:
			sinorange = [0, numslices]

		# Calculate number of substacks (chunks)
		substacks = num_substacks #(sinorange[1]-sinorange[0]-1)//num_sino_per_substack+1

		if (sinorange[1]-sinorange[0]) >= substacks:
			num_sino_per_substack = (sinorange[1]-sinorange[0])//num_substacks
		else:
			num_sino_per_substack = 1

	
		firstcor, lastcor = 0, int(gdata['nangles'])-1
		projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', ind_tomo=(firstcor, lastcor))
		projs = tomopy.normalize_nf(projs, flat, dark, floc)
		autocor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)


		if (type(COR[x]) == bool) or (COR[x]<0) or (COR[x]=='auto'):
			firstcor, lastcor = 0, int(gdata['nangles'])-1
			projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', ind_tomo=(firstcor, lastcor))
			projs = tomopy.normalize_nf(projs, flat, dark, floc)
			cor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)
		else:
			cor = COR[x]

		logging.info('Dataset %s, has %d total slices, reconstructing slices %d through %d in %d substack(s), using COR: %f',filename[x], int(gdata['nslices']), sinorange[0], sinorange[1]-1, substacks, cor)
		
		for y in range(0, substacks):
			logging.info('Starting dataset %s (%d of %d), substack %d of %d',filename[x], x+1, len(filename), y+1, substacks)

			logging.info('Reading sinograms...')
			projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', sino=(sinorange[0]+y*num_sino_per_substack, sinorange[0]+(y+1)*num_sino_per_substack, 1)) 

			logging.info('Doing remove outliers, norm (nearest flats), and -log...')
			if doOutliers:
				projs = tomopy.remove_outlier(projs, outlier_diff, size=outlier_size, axis=0)
				flat = tomopy.remove_outlier(flat, outlier_diff, size=outlier_size, axis=0)
			tomo = tomopy.normalize_nf(projs, flat, dark, floc)
			tomo = tomopy.minus_log(tomo, out=tomo) # in place logarithm 
		
			# Use padding to remove halo in reconstruction if present
			if pad_sino:
				npad = int(np.ceil(tomo.shape[2] * np.sqrt(2)) - tomo.shape[2])//2
				tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')
				cor_rec = cor + npad # account for padding
			else:
				cor_rec = cor
		
			if doFWringremoval:
				logging.info('Doing ring (Fourier-wavelet) function...')
				tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)		

			if doPhaseRetrieval:
				logging.info('Doing Phase retrieval...')
				#tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)	
				tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)		

			logging.info('Doing recon (gridrec) function and scaling/masking, with cor %f...',cor_rec)
			rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 270, 90), center=cor_rec, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)
			#rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 180+angularrange/2, 180-angularrange/2), center=cor_rec, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)		
			rec /= pxsize  # intensity values in cm^-1
			if pad_sino:
				rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
			else:
				rec = tomopy.circ_mask(rec, 0, ratio=1.0, val=0.0)
			
			if doPolarRing:
				logging.info('Doing ring (polar mean filter) function...')
				rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin)

			logging.info('Writing reconstruction slices to %s', filename[x])
			#dxchange.write_tiff_stack(rec, fname=outputPath+'alpha'+str(alphaReg)+'/rec'+filename[x]+'/rec'+filename[x], start=sinorange[0]+y*num_sino_per_substack)
			dxchange.write_tiff_stack(rec, fname=outputPath + 'recon_'+filename[x]+'/recon_'+filename[x], start=sinorange[0]+y*num_sino_per_substack)
		logging.info('Reconstruction Complete: '+ filename[x])
Example #41
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 8        # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 2.247e-4    # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    monochromator_energy = 24.9         # Energy of incident wave in keV
    alpha = 1e-02                       # Phase retrieval coeff.
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # zinger_removal
    # proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    # flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=2,pad=True)

    #data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=150)




    # phase retrieval
    #data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center/np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning) 
    data = tomopy.downsample(data, level=binning, axis=1)



# padding 
    N = data.shape[2]
    data_pad = np.zeros([data.shape[0],data.shape[1],3*N//2],dtype = "float32")
    data_pad[:,:,N//4:5*N//4] = data
    data_pad[:,:,0:N//4] = np.tile(np.reshape(data[:,:,0],[data.shape[0],data.shape[1],1]),(1,1,N//4))
    data_pad[:,:,5*N//4:] = np.tile(np.reshape(data[:,:,-1],[data.shape[0],data.shape[1],1]),(1,1,N//4))

    data = data_pad
    rot_center = rot_center+N//4

    # Reconstruct object.
    if algorithm == 'sirtfbp':
        rec = rec_sirtfbp(data, theta, rot_center)
    else:
        rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
    rec = rec[:,N//4:5*N//4,N//4:5*N//4]
      
    print("Algorithm: ", algorithm)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    
    return rec
Example #42
0
    # Set path to the micro-CT data to reconstruct.
    fname = '../../../tomopy/data/tooth.h5'

    # Select the sinogram range to reconstruct.
    start = 0
    end = 2

    # Read the APS 2-BM 0r 32-ID raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(fname, sino=(start, end))

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(proj.shape[0])

    # Set data collection angles as equally spaced between 0-180 degrees.
    proj = tomopy.normalize(proj, flat, dark)

    # Set data collection angles as equally spaced between 0-180 degrees.
    rot_center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5)

    proj = tomopy.minus_log(proj)

    # Reconstruct object using Gridrec algorithm.
    recon = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(recon, fname='recon_dir/recon')
			logging.info('...with center of rotation shifted %f',k)
			rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 270, 270-angularrange), center=cor_rec+k, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)
			
			rec /= pxsize  # intensity values in cm^-1
			

			
			CORtoWrite =cor_rec+k
			
			if doPolarRing:
				logging.info('Doing ring removal (polar mean filter)')
				rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin)
			
			if pad_sino:
				logging.info('Unpadding...')
				rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
				CORtoWrite = CORtoWrite - npad
			else:
				rec = tomopy.circ_mask(rec, 0, ratio=1.0, val=0.0)
		


			logging.info('Writing reconstruction slices to %s', iname[x])
			
			if testCOR_insteps:
				filenametowrite = odirectory+'/rec'+iname[x]+'/'+'cor'+str(CORtoWrite)+'_'+iname[x]
			else:
				filenametowrite = odirectory+'/rec'+iname[x]+'/'+iname[x]

			if castTo8bit:
				rec = convert8bit(rec,data_min,data_max)
Example #44
0
File: rec.py Project: tomopy/tomopy
def reconstruct(h5fname, sino, rot_center, args, blocked_views=None):

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)

    # Manage the missing angles:
    if blocked_views is not None:
        print("Blocked Views: ", blocked_views)
        proj = np.concatenate((proj[0:blocked_views[0], :, :],
                               proj[blocked_views[1]+1:-1, :, :]), axis=0)
        theta = np.concatenate((theta[0:blocked_views[0]],
                                theta[blocked_views[1]+1: -1]))

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data, level=7, wname='sym16', sigma=1,
                                   pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    algorithm = args.algorithm
    ncores = args.ncores
    nitr = args.num_iter

    # always add algorithm
    _kwargs = {"algorithm": algorithm}

    # assign number of cores
    _kwargs["ncore"] = ncores

    # use the accelerated version
    if algorithm in ["mlem", "sirt"]:
        _kwargs["accelerated"] = True

    # don't assign "num_iter" if gridrec or fbp
    if algorithm not in ["fbp", "gridrec"]:
        _kwargs["num_iter"] = nitr

    sname = os.path.join(args.output_dir, 'proj_{}'.format(args.algorithm))
    print(proj.shape)
    tmp = np.zeros((proj.shape[0], proj.shape[2]))
    tmp[:,:] = proj[:,0,:]
    output_image(tmp, sname + "." + args.format)

    # Reconstruct object.
    with timemory.util.auto_timer(
        "[tomopy.recon(algorithm='{}')]".format(algorithm)):
        print("Starting reconstruction with kwargs={}...".format(_kwargs))
        rec = tomopy.recon(data, theta, **_kwargs)
    print("Completed reconstruction...")

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    obj = np.zeros(rec.shape, dtype=rec.dtype)
    label = "{} @ {}".format(algorithm.upper(), h5fname)
    quantify_difference(label, obj, rec)

    return rec
Example #45
0
 def _apply_mask(self, recon):
     ratio = self.parameters['ratio']
     if ratio:
         recon = tomopy.circ_mask(recon, axis=0, ratio=ratio)
     return self._transpose(recon)
def recon(
    filename,
    inputPath = './',
    outputPath = None,
    outputFilename = None,
    doOutliers1D = False, # outlier removal in 1d (along sinogram columns)
    outlier_diff1D = 750, # difference between good data and outlier data (outlier removal)
    outlier_size1D = 3, # radius around each pixel to look for outliers (outlier removal)
    doOutliers2D = False, # outlier removal, standard 2d on each projection
    outlier_diff2D = 750, # difference between good data and outlier data (outlier removal)
    outlier_size2D = 3, # radius around each pixel to look for outliers (outlier removal)
    doFWringremoval = True,  # Fourier-wavelet ring removal
    doTIringremoval = False, # Titarenko ring removal
    doSFringremoval = False, # Smoothing filter ring removal
    ringSigma = 3, # damping parameter in Fourier space (Fourier-wavelet ring removal)
    ringLevel = 8, # number of wavelet transform levels (Fourier-wavelet ring removal)
    ringWavelet = 'db5', # type of wavelet filter (Fourier-wavelet ring removal)
    ringNBlock = 0, # used in Titarenko ring removal (doTIringremoval)
    ringAlpha = 1.5, # used in Titarenko ring removal (doTIringremoval)
    ringSize = 5, # used in smoothing filter ring removal (doSFringremoval)
    doPhaseRetrieval = False, # phase retrieval
    alphaReg = 0.0002, # smaller = smoother (used for phase retrieval)
    propagation_dist = 75, # sample-to-scintillator distance (phase retrieval)
    kev = 24, # energy level (phase retrieval)
    butterworth_cutoff = 0.25, #0.1 would be very smooth, 0.4 would be very grainy (reconstruction)
    butterworth_order = 2, # for reconstruction
    doTranslationCorrection = False, # correct for linear drift during scan
    xshift = 0, # undesired dx transation correction (from 0 degree to 180 degree proj)
    yshift = 0, # undesired dy transation correction (from 0 degree to 180 degree proj)
    doPolarRing = False, # ring removal
    Rarc=30, # min angle needed to be considered ring artifact (ring removal)
    Rmaxwidth=100, # max width of rings to be filtered (ring removal)
    Rtmax=3000.0, # max portion of image to filter (ring removal)
    Rthr=3000.0, # max value of offset due to ring artifact (ring removal)
    Rtmin=-3000.0, # min value of image to filter (ring removal)
    cor=None, # center of rotation (float). If not used then cor will be detected automatically
    corFunction = 'pc', # center of rotation function to use - can be 'pc', 'vo', or 'nm'
    voInd = None, # index of slice to use for cor search (vo)
    voSMin = -40, # min radius for searching in sinogram (vo)
    voSMax = 40, # max radius for searching in sinogram (vo)
    voSRad = 10, # search radius (vo)
    voStep = 0.5, # search step (vo)
    voRatio = 2.0, # ratio of field-of-view and object size (vo)
    voDrop = 20, # drop lines around vertical center of mask (vo)
    nmInd = None, # index of slice to use for cor search (nm)
    nmInit = None, # initial guess for center (nm)
    nmTol = 0.5, # desired sub-pixel accuracy (nm)
    nmMask = True, # if True, limits analysis to circular region (nm)
    nmRatio = 1.0, # ratio of radius of circular mask to edge of reconstructed image (nm)
    nmSinoOrder = False, # if True, analyzes in sinogram space. If False, analyzes in radiograph space
    use360to180 = False, # use 360 to 180 conversion
    doBilateralFilter = False, # if True, uses bilateral filter on image just before write step # NOTE: image will be converted to 8bit if it is not already
    bilateral_srad = 3, # spatial radius for bilateral filter (image will be converted to 8bit if not already)
    bilateral_rrad = 30, # range radius for bilateral filter (image will be converted to 8bit if not already)
    castTo8bit = False, # convert data to 8bit before writing
    cast8bit_min=-10, # min value if converting to 8bit
    cast8bit_max=30, # max value if converting to 8bit
    useNormalize_nf = False, # normalize based on background intensity (nf)
    chunk_proj = 100, # chunk size in projection direction
    chunk_sino = 100, # chunk size in sinogram direction
    npad = None, # amount to pad data before reconstruction
    projused = None, #should be slicing in projection dimension (start,end,step)
    sinoused = None, #should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack.
    correcttilt = 0, #tilt dataset
    tiltcenter_slice = None, # tilt center (x direction)
    tiltcenter_det = None, # tilt center (y direction)
    angle_offset = 0, #this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus)
    anglelist = None, #if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed.
    doBeamHardening = False, #turn on beam hardening correction, based on "Correction for beam hardening in computed tomography", Gabor Herman, 1979 Phys. Med. Biol. 24 81
    BeamHardeningCoefficients = None, #6 values, tomo = a0 + a1*tomo + a2*tomo^2 + a3*tomo^3 + a4*tomo^4 + a5*tomo^5
    projIgnoreList = None, #projections to be ignored in the reconstruction (for simplicity in the code, they will not be removed and will be processed as all other projections but will be set to zero absorption right before reconstruction.
    *args, **kwargs):
    
    start_time = time.time()
    print("Start {} at:".format(filename)+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))
    
    outputPath = inputPath if outputPath is None else outputPath

    outputFilename = filename if outputFilename is None else outputFilename
    outputFilename = outputFilename.replace('.h5','')
    tempfilenames = [outputPath+'tmp0.h5',outputPath+'tmp1.h5']
    filenametowrite = outputPath+'/rec'+filename.strip(".h5")+'/'+outputFilename
    #filenametowrite = outputPath+'/rec'+filename+'/'+outputFilename
    
    print("cleaning up previous temp files", end="")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass
    
    print(", reading metadata")
    
    datafile = h5py.File(inputPath+filename, 'r')
    gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs) 
    pxsize = float(gdata['pxsize'])/10 # /10 to convert units from mm to cm
    numslices = int(gdata['nslices'])
    numangles = int(gdata['nangles'])
    angularrange = float(gdata['arange'])
    numrays = int(gdata['nrays'])
    npad = int(np.ceil(numrays * np.sqrt(2)) - numrays)//2 if npad is None else npad
    projused = (0,numangles-1,1) if projused is None else projused

#    ndark = int(gdata['num_dark_fields'])
#    ind_dark = list(range(0, ndark))
#    group_dark = [numangles - 1]
    inter_bright = int(gdata['i0cycle'])
    nflat = int(gdata['num_bright_field'])
    ind_flat = list(range(0, nflat))
    if inter_bright > 0:
        group_flat = list(range(0, numangles, inter_bright))
        if group_flat[-1] != numangles - 1:
            group_flat.append(numangles - 1)
    elif inter_bright == 0:
        group_flat = [0, numangles - 1]
    else:
        group_flat = None
    ind_tomo = list(range(0, numangles))
    floc_independent = dxchange.reader._map_loc(ind_tomo, group_flat)        

    #figure out the angle list (a list of angles, one per projection image)
    dtemp = datafile[list(datafile.keys())[0]]
    fltemp = list(dtemp.keys())
    firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle',0))
    if anglelist is None:
        #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be.
        #we add the 270 to be inte same orientation as previous software used at bl832
        angle_offset = 270 + angle_offset - firstangle
        anglelist = tomopy.angles(numangles, angle_offset, angle_offset-angularrange)
    elif anglelist==-1:
        anglelist = np.zeros(shape=numangles)
        for icount in range(0,numangles):
            anglelist[icount] = np.pi/180*(270 + angle_offset - float(dtemp[fltemp[icount]].attrs['rot_angle']))
            
    #if projused is different than default, need to chnage numangles and angularrange
    
    #can't do useNormalize_nf and doOutliers2D at the same time, or doOutliers2D and doOutliers1D at the same time, b/c of the way we chunk, for now just disable that
    if useNormalize_nf==True and doOutliers2D==True:
        useNormalize_nf = False
        print("we cannot currently do useNormalize_nf and doOutliers2D at the same time, turning off useNormalize_nf")
    if doOutliers2D==True and doOutliers1D==True:
        doOutliers1D = False
        print("we cannot currently do doOutliers1D and doOutliers2D at the same time, turning off doOutliers1D")
    
    #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices)
    if sinoused is None:
        sinoused = (0,numslices,1)
    elif sinoused[0]<0:
        sinoused=(int(np.floor(numslices/2.0)-np.ceil(sinoused[1]/2.0)),int(np.floor(numslices/2.0)+np.floor(sinoused[1]/2.0)),1)
    
    num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0])
    numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1
    num_sino_per_chunk = np.minimum(chunk_sino,sinoused[1]-sinoused[0])
    numsinochunks = (sinoused[1]-sinoused[0]-1)//num_sino_per_chunk+1
    numprojused = (projused[1]-projused[0])//projused[2]
    numsinoused = (sinoused[1]-sinoused[0])//sinoused[2]
    
    BeamHardeningCoefficients = (0, 1, 0, 0, 0, .1) if BeamHardeningCoefficients is None else BeamHardeningCoefficients

    if cor is None:
        print("Detecting center of rotation", end="") 
        if angularrange>300:
            lastcor = int(np.floor(numangles/2)-1)
        else:
            lastcor = numangles-1
        #I don't want to see the warnings about the reader using a deprecated variable in dxchange
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=(0,lastcor))
        tomo = tomo.astype(np.float32)
        if useNormalize_nf:
            tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo)
        else:
            tomopy.normalize(tomo, flat, dark, out=tomo)

        if corFunction == 'vo':
            # same reason for catching warnings as above
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                cor = tomopy.find_center_vo(tomo, ind=voInd, smin=voSMin, smax=voSMax, srad=voSRad, step=voStep,
                                        ratio=voRatio, drop=voDrop)
        elif corFunction == 'nm':
            cor = tomopy.find_center(tomo, tomopy.angles(numangles, angle_offset, angle_offset-angularrange),
                                     ind=nmInd, init=nmInit, tol=nmTol, mask=nmMask, ratio=nmRatio,
                                     sinogram_order=nmSinoOrder)
        elif corFunction == 'pc':
            cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25)
        else:
            raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].")
        print(", {}".format(cor))
    else:
        print("using user input center of {}".format(cor))
        
    
    function_list = []

    if doOutliers1D:
        function_list.append('remove_outlier1d')
    if doOutliers2D:
        function_list.append('remove_outlier2d')
    if useNormalize_nf:
        function_list.append('normalize_nf')
    else:
        function_list.append('normalize')
    function_list.append('minus_log')
    if doBeamHardening:
        function_list.append('beam_hardening')
    if doFWringremoval:
        function_list.append('remove_stripe_fw')
    if doTIringremoval:
        function_list.append('remove_stripe_ti')
    if doSFringremoval:
        function_list.append('remove_stripe_sf')
    if correcttilt:
        function_list.append('correcttilt')
    if use360to180:
        function_list.append('do_360_to_180')
    if doPhaseRetrieval:
        function_list.append('phase_retrieval')
    function_list.append('recon_mask')
    if doPolarRing:
        function_list.append('polar_ring')
    if castTo8bit:
        function_list.append('castTo8bit')
    if doBilateralFilter:
        function_list.append('bilateral_filter')
    function_list.append('write_output')
        
    
    # Figure out first direction to slice
    for func in function_list:
        if slice_dir[func] != 'both':
            axis = slice_dir[func]
            break
    
    done = False
    curfunc = 0
    curtemp = 0
    while True: # Loop over reading data in certain chunking direction
        if axis=='proj':
            niter = numprojchunks
        else:
            niter = numsinochunks
        for y in range(niter): # Loop over chunks
            print("{} chunk {} of {}".format(axis, y+1, niter))
            if curfunc==0:
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    if axis=='proj':
                        tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(y*num_proj_per_chunk+projused[0],np.minimum((y + 1)*num_proj_per_chunk+projused[0],numangles)),sino=(sinoused[0],sinoused[1], sinoused[2]) )
                    else:
                        tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(projused[0],projused[1],projused[2]),sino=(y*num_sino_per_chunk+sinoused[0],np.minimum((y + 1)*num_sino_per_chunk+sinoused[0],numslices),1) )
            else:
                if axis=='proj':
                    start, end = y * num_proj_per_chunk, np.minimum((y + 1) * num_proj_per_chunk,numprojused)
                    tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((start,end,1),(0,numslices,1),(0,numrays,1))) #read in intermediate file
                else:
                    start, end = y * num_sino_per_chunk, np.minimum((y + 1) * num_sino_per_chunk,numsinoused)
                    tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((0,numangles,1),(start,end,1),(0,numrays,1)))
            dofunc = curfunc
            keepvalues = None
            while True: # Loop over operations to do in current chunking direction
                func_name = function_list[dofunc]
                newaxis = slice_dir[func_name]
                if newaxis != 'both' and newaxis != axis:
                    # We have to switch axis, so flush to disk
                    if y==0:
                        try:
                            os.remove(tempfilenames[1-curtemp])
                        except OSError:
                            pass
                    appendaxis = 1 if axis=='sino' else 0
                    dxchange.writer.write_hdf5(tomo,fname=tempfilenames[1-curtemp],gname='tmp',dname='tmp',overwrite=False,appendaxis=appendaxis) #writing intermediate file...
                    break
                print(func_name, end=" ")
                curtime = time.time()
                if func_name == 'remove_outlier1d':
                    tomo = tomo.astype(np.float32,copy=False)
                    remove_outlier1d(tomo, outlier_diff1D, size=outlier_size1D, out=tomo)
                if func_name == 'remove_outlier2d':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.remove_outlier(tomo, outlier_diff2D, size=outlier_size2D, axis=0, out=tomo)
                elif func_name == 'normalize_nf':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.normalize_nf(tomo, flat, dark, floc_independent, out=tomo) #use floc_independent b/c when you read file in proj chunks, you don't get the correct floc returned right now to use here.
                elif func_name == 'normalize':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.normalize(tomo, flat, dark, out=tomo)
                elif func_name == 'minus_log':
                    mx = np.float32(0.00000000000000000001)
                    ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo)
                    tomopy.minus_log(tomo, out=tomo)
                elif func_name == 'beam_hardening':
                    loc_dict = {'a{}'.format(i):np.float32(val) for i,val in enumerate(BeamHardeningCoefficients)}
                    tomo = ne.evaluate('a0 + a1*tomo + a2*tomo**2 + a3*tomo**3 + a4*tomo**4 + a5*tomo**5', local_dict=loc_dict, out=tomo)
                elif func_name == 'remove_stripe_fw':
                    tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)
                elif func_name == 'remove_stripe_ti':
                    tomo = tomopy.remove_stripe_ti(tomo, nblock=ringNBlock, alpha=ringAlpha)
                elif func_name == 'remove_stripe_sf':
                    tomo = tomopy.remove_stripe_sf(tomo, size=ringSize)
                elif func_name == 'correcttilt':
                    if tiltcenter_slice is None:
                        tiltcenter_slice = numslices/2.
                    if tiltcenter_det is None:
                        tiltcenter_det = tomo.shape[2]/2
                    new_center = tiltcenter_slice - 0.5 - sinoused[0]
                    center_det = tiltcenter_det - 0.5
                    
                    #add padding of 10 pixels, to be unpadded right after tilt correction. This makes the tilted image not have zeros at certain edges, which matters in cases where sample is bigger than the field of view. For the small amounts we are generally tilting the images, 10 pixels is sufficient.
#                    tomo = tomopy.pad(tomo, 2, npad=10, mode='edge')
#                    center_det = center_det + 10
                    
                    cntr = (center_det, new_center)
                    for b in range(tomo.shape[0]):
                        tomo[b] = st.rotate(tomo[b], correcttilt, center=cntr, preserve_range=True, order=1, mode='edge', clip=True) #center=None means image is rotated around its center; order=1 is default, order of spline interpolation
#                    tomo = tomo[:, :, 10:-10]    
                        
                elif func_name == 'do_360_to_180':
                    
                    # Keep values around for processing the next chunk in the list
                    keepvalues = [angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist]
                    
                    #why -.5 on one and not on the other?
                    if tomo.shape[0]%2>0:
                        tomo = sino_360_to_180(tomo[0:-1,:,:], overlap=int(np.round((tomo.shape[2]-cor-.5))*2), rotation='right')
                        angularrange = angularrange/2 - angularrange/(tomo.shape[0]-1)
                    else:
                        tomo = sino_360_to_180(tomo[:,:,:], overlap=int(np.round((tomo.shape[2]-cor))*2), rotation='right')
                        angularrange = angularrange/2
                    numangles = int(numangles/2)
                    projused = (0,numangles-1,1)
                    num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0])
                    numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1
                    numprojused = (projused[1]-projused[0])//projused[2]
                    numrays = tomo.shape[2]
                    
                    anglelist = anglelist[:numangles]
                
                elif func_name == 'phase_retrieval':
                    tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)
                
                elif func_name == 'translation_correction':
                    tomo = linear_translation_correction(tomo,dx=xshift,dy=yshift,interpolation=False):
                    
                elif func_name == 'recon_mask':
                    tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')

                    if projIgnoreList is not None:
                        for badproj in projIgnoreList:
                            tomo[badproj] = 0

                    rec = tomopy.recon(tomo, anglelist, center=cor+npad, algorithm='gridrec', filter_name='butterworth', filter_par=[butterworth_cutoff, butterworth_order])
                    rec = rec[:, npad:-npad, npad:-npad]
                    rec /= pxsize  # convert reconstructed voxel values from 1/pixel to 1/cm
                    rec = tomopy.circ_mask(rec, 0)
                elif func_name == 'polar_ring':
                    rec = np.ascontiguousarray(rec, dtype=np.float32)
                    rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin,out=rec)
                elif func_name == 'castTo8bit':
                    rec = convert8bit(rec, cast8bit_min, cast8bit_max)
                elif func_name == 'bilateral_filter':
                    rec = pyF3D.run_BilateralFilter(rec, spatialRadius=bilateral_srad, rangeRadius=bilateral_rrad)
                elif func_name == 'write_output':
                    dxchange.write_tiff_stack(rec, fname=filenametowrite, start=y*num_sino_per_chunk + sinoused[0])
                print('(took {:.2f} seconds)'.format(time.time()-curtime))
                dofunc+=1
                if dofunc==len(function_list):
                    break
            if y<niter-1 and keepvalues: # Reset original values for next chunk
                angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist = keepvalues
                
        curtemp = 1 - curtemp
        curfunc = dofunc
        if curfunc==len(function_list):
            break
        axis = slice_dir[function_list[curfunc]]
    print("cleaning up temp files")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass
    print("End Time: "+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))
    print('It took {:.3f} s to process {}'.format(time.time()-start_time,inputPath+filename))
Example #47
0
def main(arg):

    parser = argparse.ArgumentParser()
    parser.add_argument("fname", help="Full file name: /data/fname.raw")
    parser.add_argument("--start", nargs='?', type=int, default=0, help="First image to read")
    parser.add_argument("--nimg", nargs='?', type=int, default=1, help="Number of images to read")
    parser.add_argument("--ndark", nargs='?', type=int, default=10, help="Number of dark images")
    parser.add_argument("--nflat", nargs='?', type=int, default=10, help="Number of white images")

    args = parser.parse_args()

    fname = args.fname
    start = args.start
    end = args.start + args.nimg

    nflat, ndark, nimg, height, width = read_adimec_header(fname)
    print("Image Size:", width, height)
    print("Dataset metadata (nflat, ndark, nimg:", nflat, ndark, nimg)

    # override nflat and ndark from header with the passed parameter
    # comment the two lines below if the meta data in the binary 
    # file for nflat and ndark is correct
    nflat = args.nflat
    ndark = args.ndark

    proj = read_adimec_stack(fname, img=(start, end))
    print("Projection:", proj.shape)
    # slider(proj)

    flat = read_adimec_stack(fname, img=(nimg-ndark-nflat, nimg-ndark))
    print("Flat:", flat.shape)
    # slider(flat)

    dark = read_adimec_stack(fname, img=(nimg-ndark, nimg))
    print("Dark:", dark.shape)
    # slider(dark)

    nproj = tomopy.normalize(proj, flat, dark)
    print("Normalized projection:", nproj.shape)
    # slider(proj)

    
    proj = nproj[:,100:110, :]
    print("Sino chunk:", proj.shape)
    slider(proj)
    
    theta = tomopy.angles(proj.shape[0])
    print(theta.shape)

    proj = tomopy.minus_log(proj)

    proj = tomopy.remove_nan(proj, val=0.0)
    proj = tomopy.remove_neg(proj, val=0.00)
    proj[np.where(proj == np.inf)] = 0.00

    rot_center = 1280
    # Reconstruct object using Gridrec algorithm.
    rec = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
Example #48
0
def fast_tomo_recon(argv):
    """
    Reconstruct subset slices (sinograms) equally spaced within tomographic
    dataset
    """

    logger = logging.getLogger("fast_tomopy.fast_tomo_recon")

    # Parse arguments passed to function
    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--input", type=str, help="path to input raw " "dataset", required=True)
    parser.add_argument(
        "-o",
        "--output-file",
        type=str,
        help="full path to h5 output " "file",
        default=os.path.join(os.getcwd(), "fast-tomopy.h5"),
    )
    parser.add_argument("-sn", "--sino-num", type=int, help="Number of slices " "to reconstruct", default=5)
    parser.add_argument(
        "-a",
        "--algorithm",
        type=str,
        help="Reconstruction" " algorithm",
        default="gridrec",
        choices=[
            "art",
            "bart",
            "fbp",
            "gridrec",
            "mlem",
            "ospml_hybrid",
            "ospml_quad",
            "pml_hybrid",
            "pml_quad",
            "sirt",
        ],
    )
    parser.add_argument("-c", "--center", type=float, help="Center of rotation", default=None)
    parser.add_argument(
        "-fn",
        "--filter-name",
        type=str,
        help="Name of filter" " used for reconstruction",
        choices=["none", "shepp", "cosine", "hann", "hamming", "ramlak", "parzen", "butterworth"],
        default="butterworth",
    )
    parser.add_argument(
        "-rr",
        "--ring-remove",
        type=str,
        help="Ring removal " "method",
        choices=["Octopus", "Tomopy-FW", "Tomopy-T"],
        default="Tomopy-T",
    )
    parser.add_argument("-lf", "--log-file", type=str, help="log file name", default="fast-tomopy.log")

    args = parser.parse_args()

    fh = logging.FileHandler(args.log_file)
    fh.setLevel(logging.INFO)
    fh.setFormatter(formatter)
    logger.addHandler(fh)

    if os.path.isdir(os.path.dirname(args.output_file)) is False:
        raise IOError(2, "Directory of output file does not exist", args.output_file)

    # Read file metadata
    logger.info("Reading input file metadata")
    fdata, gdata = read_als_832h5_metadata(args.input)
    proj_total = int(gdata["nangles"])
    last = proj_total - 1
    sino_total = int(gdata["nslices"])
    ray_total = int(gdata["nrays"])
    px_size = float(gdata["pxsize"]) / 10  # cm

    # Set parameters for sinograms to read
    step = sino_total // (args.sino_num + 2)
    start = step
    end = step * (args.sino_num + 1)
    sino = (start, end, step)

    # Read full first and last projection to determine center of rotation
    if args.center is None:
        logger.info("Reading full first and last projection for COR")
        first_last, flats, darks, floc = tomopy.read_als_832h5(args.input, ind_tomo=(0, last))
        first_last = tomopy.normalize(first_last, flats, darks)
        args.center = tomopy.find_center_pc(first_last[0, :, :], first_last[1, :, :], tol=0.1)
        logger.info("Detected center: %f", args.center)

    # Read and normalize raw sinograms
    logger.info("Reading raw data")
    tomo, flats, darks, floc = tomopy.read_als_832h5(args.input, sino=sino)
    logger.info("Normalizing raw data")
    tomo = tomopy.normalize_nf(tomo, flats, darks, floc)

    # Remove stripes from sinograms (remove rings)
    logger.info("Preprocessing normalized data")
    if args.ring_remove == "Tomopy-FW":
        logger.info("Removing stripes from sinograms with %s", args.ring_remove)
        tomo = tomopy.remove_stripe_fw(tomo)
    elif args.ring_remove == "Tomopy-T":
        logger.info("Removing stripes from sinograms with %s", args.ring_remove)
        tomo = tomopy.remove_stripe_ti(tomo)

    # Pad sinograms with edge values
    npad = int(np.ceil(ray_total * np.sqrt(2)) - ray_total) // 2
    tomo = tomopy.pad(tomo, 2, npad=npad, mode="edge")
    args.center += npad  # account for padding

    filter_name = np.array(args.filter_name, dtype=(str, 16))
    theta = tomopy.angles(proj_total, 270, 90)

    logger.info("Reconstructing normalized data")
    # Reconstruct sinograms
    # rec = tomopy.minus_log(tomo, out=tomo)
    rec = tomopy.recon(
        tomo, theta, center=args.center, emission=False, algorithm=args.algorithm, filter_name=filter_name
    )
    rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
    rec = rec / px_size

    # Remove rings from reconstruction
    if args.ring_remove == "Octopus":
        logger.info("Removing rings from reconstructions with %s", args.ring_remove)
        thresh = float(gdata["ring_threshold"])
        thresh_max = float(gdata["upp_ring_value"])
        thresh_min = float(gdata["low_ring_value"])
        theta_min = int(gdata["max_arc_length"])
        rwidth = int(gdata["max_ring_size"])
        rec = tomopy.remove_rings(
            rec,
            center_x=args.center,
            thresh=thresh,
            thresh_max=thresh_max,
            thresh_min=thresh_min,
            theta_min=theta_min,
            rwidth=rwidth,
        )

    # Write reconstruction data to new hdf5 file
    fdata["stage"] = "fast-tomopy"
    fdata["stage_flow"] = "/raw/" + fdata["stage"]
    fdata["stage_version"] = "fast-tomopy-0.1"
    # Generate a new uuid based on host ID and current time
    fdata["uuid"] = str(uuid.uuid1())

    gdata["Reconstruction_Type"] = "tomopy-gridrec"
    gdata["ring_removal_method"] = args.ring_remove
    gdata["rfilter"] = args.filter_name

    logger.info("Writing reconstructed data to h5 file")
    write_als_832h5(rec, args.input, fdata, gdata, args.output_file, step)

    return
Example #49
0
def rec_try(h5fname, nsino, rot_center, center_search_width, algorithm, binning):
    
    data_shape = get_dx_dims(h5fname, 'data')
    print(data_shape)
    ssino = int(data_shape[1] * nsino)
    rot_center+=data_shape[2]//4
    center_range = (rot_center-center_search_width, rot_center+center_search_width, 0.5)
    #print(sino,ssino, center_range)
    #print(center_range[0], center_range[1], center_range[2])

    # Select sinogram range to reconstruct
    sino = None
        
    start = ssino
    end = start + 1
    sino = (start, end)

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
        
    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=2,pad=True)

    #data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=150)

    # remove stripes
    # data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)


    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    # padding 
    N = data.shape[2]
    data_pad = np.zeros([data.shape[0],data.shape[1],3*N//2],dtype = "float32")
    data_pad[:,:,N//4:5*N//4] = data
    data_pad[:,:,0:N//4] = np.tile(np.reshape(data[:,:,0],[data.shape[0],data.shape[1],1]),(1,1,N//4))
    data_pad[:,:,5*N//4:] = np.tile(np.reshape(data[:,:,-1],[data.shape[0],data.shape[1],1]),(1,1,N//4))

    data = data_pad
  
 


    stack = np.empty((len(np.arange(*center_range)), data.shape[0], data.shape[2]))
  
    print(stack.shape)
    print(data.shape)




    index = 0
    for axis in np.arange(*center_range):
        stack[index] = data[:, 0, :]
        index = index + 1

     # Reconstruct the same slice with a range of centers.
    rec = tomopy.recon(stack, theta, center=np.arange(*center_range), sinogram_order=True, algorithm='gridrec', filter_name='parzen', nchunk=1)

    rec = rec[:,N//4:5*N//4,N//4:5*N//4]

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    index = 0
    # Save images to a temporary folder.
    fname = os.path.dirname(h5fname) + '/' + 'try_rec/' + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]    
    for axis in np.arange(*center_range):
        rfname = fname + '_' + str('{0:.2f}'.format(axis-N//4) + '.tiff')
        dxchange.write_tiff(rec[index], fname=rfname, overwrite=True)
        index = index + 1

    print("Reconstructions: ", fname)
Example #50
0
def recon_block(grid, shift_grid, src_folder, dest_folder, slice_range, sino_step, center_vec, ds_level=0, blend_method='max',
                blend_options=None, tolerance=1, sinogram_order=False, algorithm='gridrec', init_recon=None, ncore=None, nchunk=None, dtype='float32',
                crop=None, save_sino=False, assert_width=None, sino_blur=None, color_correction=False, flattened_radius=120, normalize=True,
                test_mode=False, mode='180', phase_retrieval=None, **kwargs):
    """
    Reconstruct dsicrete HDF5 tiles, blending sinograms only.
    """

    raw_folder = os.getcwd()
    os.chdir(src_folder)
    sino_ini = int(slice_range[0])
    sino_end = int(slice_range[1])
    mod_start_slice = 0
    center_vec = np.asarray(center_vec)
    center_pos_cache = 0
    sino_ls = np.arange(sino_ini, sino_end, sino_step, dtype='int')
    pix_shift_grid = np.ceil(shift_grid)
    pix_shift_grid[pix_shift_grid < 0] = 0

    alloc_set = allocate_mpi_subsets(sino_ls.size, size, task_list=sino_ls)
    for i_slice in alloc_set[rank]:
        print('############################################')
        print('Reconstructing ' + str(i_slice))
        # judge from which tile to retrieve sinos
        grid_lines = np.zeros(grid.shape[1], dtype=np.int)
        slice_in_tile = np.zeros(grid.shape[1], dtype=np.int)
        for col in range(grid.shape[1]):
            bins = pix_shift_grid[:, col, 0]
            grid_lines[col] = int(np.squeeze(np.digitize(i_slice, bins)) - 1)
            if grid_lines[col] == -1:
                print("WARNING: The specified starting slice number does not allow for full sinogram construction. Trying next slice...")
                mod_start_slice = 1
                break
            else:
                mod_start_slice = 0
            slice_in_tile[col] = i_slice - bins[grid_lines[col]]
        if mod_start_slice == 1:
            continue
        center_pos = int(np.round(center_vec[grid_lines].mean()))
        if center_pos_cache == 0:
            center_pos_cache = center_pos
        center_diff = center_pos - center_pos_cache
        center_pos_0 = center_pos
        row_sino, center_pos = prepare_slice(grid, shift_grid, grid_lines, slice_in_tile, ds_level=ds_level,
                                             method=blend_method, blend_options=blend_options, rot_center=center_pos,
                                             assert_width=assert_width, sino_blur=sino_blur, color_correction=color_correction,
                                             normalize=normalize, mode=mode, phase_retrieval=phase_retrieval)
        rec0 = recon_slice(row_sino, center_pos, sinogram_order=sinogram_order, algorithm=algorithm,
                          init_recon=init_recon, ncore=ncore, nchunk=nchunk, **kwargs)
        rec = tomopy.remove_ring(np.copy(rec0))
        cent = int((rec.shape[1] - 1) / 2)
        xx, yy = np.meshgrid(np.arange(rec.shape[2]), np.arange(rec.shape[1]))
        mask0 = ((xx - cent) ** 2 + (yy - cent) ** 2 <= flattened_radius ** 2)
        mask = np.zeros(rec.shape, dtype='bool')
        for i in range(mask.shape[0]):
            mask[i, :, :] = mask0
        rec[mask] = (rec[mask] + rec0[mask]) / 2
        rec = tomopy.remove_outlier(rec, tolerance)
        rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

        print('Center:            {:d}'.format(center_pos))
        rec = np.squeeze(rec)
        if center_diff != 0:
            rec = np.roll(rec, -center_diff, axis=0)
        if not crop is None:
            crop = np.asarray(crop)
            rec = rec[crop[0, 0]:crop[1, 0], crop[0, 1]:crop[1, 1]]

        os.chdir(raw_folder)
        if test_mode:
            dxchange.write_tiff(rec, fname=os.path.join(dest_folder, 'recon/recon_{:05d}_{:04d}.tiff'.format(i_slice, center_pos)), dtype=dtype)
        else:
            dxchange.write_tiff(rec, fname=os.path.join(dest_folder, 'recon/recon_{:05d}.tiff'.format(i_slice)), dtype=dtype)
        if save_sino:
            dxchange.write_tiff(np.squeeze(row_sino), fname=os.path.join(dest_folder, 'sino/sino_{:05d}.tiff'.format(i_slice)), overwrite=True)
        os.chdir(src_folder)
    os.chdir(raw_folder)
    return
Example #51
0
    if remove_stripe2: data = tomopy.remove_stripe_ti(data)

    #d.downsample2d(level=level) # apply binning on the data
    data = tomopy.downsample(data, level=level) # apply binning on the data
    theta  = tomopy.angles(data.shape[0])
    if 1:
        #if not best_center: d.optimize_center()
        if not best_center: calc_center = tomopy.find_center(data, theta, emission=False, ind=0, tol=0.3)
        else: 
            #d.center=best_center/pow(2,level) # Manage the rotation center
            calc_center = best_center/pow(2,level) # Manage the rotation center
        #d.gridrec(ringWidth=RingW) # Run the reconstruction
        rec = tomopy.recon(data, theta, center=calc_center, algorithm='gridrec', emission=False)
        
        #d.apply_mask(ratio=1)
        rec = tomopy.circ_mask(rec, axis=0)

        # Write data as stack of TIFs.
        #tomopy.xtomo_writer(d.data_recon, output_name, 
        #                    axis=0,
        #                    x_start=slice_first)
        tomopy.io.writer.write_tiff_stack(rec, fname=output_name, axis=0, start=slice_first)

#### for the whole volume reconstruction
if 1:
    f = h5py.File(file_name, "r"); nProj, nslices, nCol = f["/exchange3/data"].shape
    nslices_per_chunk = nslices/chunk

    for iChunk in range(0,chunk):
        print '\n  -- chunk # %i' % (iChunk+1)
        slice_first = nslices_per_chunk*iChunk 
Example #52
0
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):

    sample_detector_distance = 25       # Propagation distance of the wavefront in cm
    detector_pixel_size_x = 2.143e-4    # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
    #monochromator_energy = 24.9        # Energy of incident wave in keV
    # used pink beam

    alpha = 1e-02                       # Phase retrieval coeff.
    zinger_level = 800                  # Zinger level for projections
    zinger_level_w = 1000               # Zinger level for white

    # Read APS 2-BM raw data.
    # DIMAX saves 3 files: proj, flat, dark
    # when loading the data set select the proj file (larger size)

    fname = os.path.splitext(h5fname)[0]    
 
    fbase = fname.rsplit('_', 1)[0]
    fnum = fname.rsplit('_', 1)[1]
    fext = os.path.splitext(h5fname)[1]  

    fnum_flat = str("%4.4d" % (int(fnum)+1))
    fnum_dark = str("%4.4d" % (int(fnum)+2))

    fnproj = fbase + '_' + fnum + fext
    fnflat = fbase + '_' + fnum_flat + fext
    fndark = fbase + '_' + fnum_dark + fext

    fnflat = '/local/data/2018-11/Chawla/1G_A/1G_A_0002.hdf'
    fndark = '/local/data/2018-11/Chawla/1G_A/1G_A_0003.hdf'

    print('proj', fnproj)
    print('flat', fnflat)
    print('dark', fndark)
    # Read APS 2-BM DIMAX raw data.
    proj, dum, dum2, theta = dxchange.read_aps_32id(fnproj, sino=sino)
    dum3, flat, dum4, dum5 = dxchange.read_aps_32id(fnflat, sino=sino)      
    dum6, dum7, dark, dum8 = dxchange.read_aps_32id(fndark, sino=sino)

    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)

    # remove stripes
    data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)        
    
    # zinger_removal
    proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
    flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)

    # Flat-field correction of raw data.
    ##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
    data = tomopy.normalize(proj, flat, dark)

    # remove stripes
    #data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)

    #data = tomopy.remove_stripe_ti(data, alpha=1.5)
    data = tomopy.remove_stripe_sf(data, size=150)

    # phase retrieval
    #data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)

    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    rot_center = rot_center/np.power(2, float(binning))
    data = tomopy.downsample(data, level=binning) 
    data = tomopy.downsample(data, level=binning, axis=1)

    # Reconstruct object.
    if algorithm == 'sirtfbp':
        rec = rec_sirtfbp(data, theta, rot_center)
    else:
        rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
        
    print("Algorithm: ", algorithm)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
    #rec = np.swapaxes(rec,0,2)
    
    return rec
Example #53
0
    # Filters are saved in .mat files in "./ยจ
    test_sirtfbp_iter = True
    if test_sirtfbp_iter:
        nCol = data.shape[2]
        output_name = './test_iter/'
        num_iter = [50,100,150]
        filter_dict = sirtfilter.getfilter(nCol, theta, num_iter, filter_dir='./')
        for its in num_iter:
            tomopy_filter = sirtfilter.convert_to_tomopy_filter(filter_dict[its], nCol)
            rec = tomopy.recon(data, theta, center=rot_center, algorithm='gridrec', filter_name='custom2d', filter_par=tomopy_filter)
            output_name_2 = output_name + 'sirt_fbp_%iiter_slice_' % its
            dxchange.write_tiff_stack(data, fname=output_name_2, start=start, dtype='float32')

    # Reconstruct object using sirt-fbp algorithm:
    num_iter = 100
    nCol = data.shape[2]
    sirtfbp_filter = sirtfilter.getfilter(nCol, theta, num_iter, filter_dir='./')
    tomopy_filter = sirtfilter.convert_to_tomopy_filter(sirtfbp_filter, nCol)
    rec = tomopy.recon(data, theta, center=rot_center, algorithm='gridrec', filter_name='custom2d', filter_par=tomopy_filter)

    # Reconstruct object using Gridrec algorithm.
#    rec = tomopy.recon(data, theta, center=rot_center, algorithm='gridrec', nchunk=1)
    
    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    # Write data as stack of TIFs.
    fname='/replace_this_with_data_dir_path/sirtfbp_recon'
    dxchange.write_tiff_stack(rec, fname=fname)

Example #54
0
def rec_try(h5fname, nsino, rot_center, center_search_width, algorithm, binning, dark_file):
    
    data_shape = get_dx_dims(h5fname, 'data')
    print(data_shape)
    ssino = int(data_shape[1] * nsino)

    center_range = (rot_center-center_search_width, rot_center+center_search_width, 0.5)
    #print(sino,ssino, center_range)
    #print(center_range[0], center_range[1], center_range[2])

    # Select sinogram range to reconstruct
    sino = None
        
    start = ssino
    end = start + 1
    sino = (start, end)

    # Read APS 32-BM raw data.
    proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
    if dark_file is not None:
        print('Reading white/dark from {}'.format(dark_file))
        proj_, flat, dark, theta_ = dxchange.read_aps_32id(dark_file, sino=sino)
        del proj_, theta_

    print(proj.shape, flat.shape, dark.shape)
        
    # Flat-field correction of raw data.
    data = tomopy.normalize(proj, flat, dark, cutoff=1.4)    

    # remove stripes
    # data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)


    print("Raw data: ", h5fname)
    print("Center: ", rot_center)

    data = tomopy.minus_log(data)

    data = tomopy.remove_nan(data, val=0.0)
    data = tomopy.remove_neg(data, val=0.00)
    data[np.where(data == np.inf)] = 0.00

    stack = np.empty((len(np.arange(*center_range)), data_shape[0], data_shape[2]))

    index = 0
    for axis in np.arange(*center_range):
        stack[index] = data[:, 0, :]
        index = index + 1

    # Reconstruct the same slice with a range of centers.
    rec = tomopy.recon(stack, theta, center=np.arange(*center_range), sinogram_order=True, algorithm='gridrec', filter_name='parzen', nchunk=1)

    # Mask each reconstructed slice with a circle.
    rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

    index = 0
    # Save images to a temporary folder.
    #fname = os.path.dirname(h5fname) + os.sep + 'try_rec/' + path_base_name(h5fname) + os.sep + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]    
    fname = os.path.dirname(h5fname) + os.sep + 'centers/' + path_base_name(h5fname) + os.sep + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]    
    for axis in np.arange(*center_range):
        rfname = fname + '_' + str('{0:.2f}'.format(axis) + '.tiff')
        dxchange.write_tiff(rec[index], fname=rfname, overwrite=True)
        index = index + 1

    print("Reconstructions: ", fname)
Example #55
0
import tomopy
import dxchange

if __name__ == '__main__':

    # Set path to the micro-CT data to reconstruct.
    fname = '../../../tomopy/data/tooth.h5'

    # Select the sinogram range to reconstruct.
    start = 0
    end = 2

    # Read the APS 2-BM 0r 32-ID raw data.
    proj, flat, dark = dxchange.read_aps_32id(fname, sino=(start, end))

    # Set data collection angles as equally spaced between 0-180 degrees.
    theta = tomopy.angles(proj.shape[0])

    # Set data collection angles as equally spaced between 0-180 degrees.
    proj = tomopy.normalize(proj, flat, dark)

    # Set data collection angles as equally spaced between 0-180 degrees.
    rot_center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5)

    tomopy.minus_log(proj)

    # Reconstruct object using Gridrec algorithm.
    recon = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec')

    # Mask each reconstructed slice with a circle.
    recon = tomopy.circ_mask(recon, axis=0, ratio=0.95)
Example #56
0
 def _apply_mask(self, recon):
     ratio = self.parameters['ratio']
     if ratio:
         recon = tomopy.circ_mask(recon, axis=0, ratio=ratio)
     return self._transpose(recon)
Example #57
0
def fast_tomo_recon(argv):
    """
    Reconstruct subset slices (sinograms) equally spaced within tomographic
    dataset
    """

    logger = logging.getLogger('fast_tomopy.fast_tomo_recon')

    # Parse arguments passed to function
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--input', type=str, help='path to input raw '
                        'dataset', required=True)
    parser.add_argument('-o', '--output-file', type=str, help='full path to h5 output '
                        'file', default=os.path.join(os.getcwd(), "fast-tomopy.h5"))
    parser.add_argument('-sn', '--sino-num', type=int, help='Number of slices '
                        'to reconstruct', default=5)
    parser.add_argument('-a', '--algorithm', type=str, help='Reconstruction'
                        ' algorithm', default='gridrec',
                        choices=['art', 'bart', 'fbp', 'gridrec', 'mlem',
                                 'ospml_hybrid', 'ospml_quad', 'pml_hybrid',
                                 'pml_quad', 'sirt'])
    parser.add_argument('-c', '--center', type=float, help='Center of rotation',
                        default=None)
    parser.add_argument('-fn', '--filter-name', type=str, help='Name of filter'
                        ' used for reconstruction',
                        choices=['none', 'shepp', 'cosine', 'hann', 'hamming',
                                 'ramlak', 'parzen', 'butterworth'],
                        default='butterworth')
    parser.add_argument('-rr', '--ring-remove', type=str, help='Ring removal '
                        'method', choices=['Octopus', 'Tomopy-FW', 'Tomopy-T'],
                        default='Tomopy-FW')
    parser.add_argument('-lf', '--log-file', type=str, help='log file name',
                        default='fast-tomopy.log')

    args = parser.parse_args()

    fh = logging.FileHandler(args.log_file)
    fh.setLevel(logging.INFO)
    fh.setFormatter(formatter)
    logger.addHandler(fh)

    if os.path.isdir(os.path.dirname(args.output_file)) is False:
        raise IOError(2, 'Directory of output file does not exist', args.output_file)

    # Read file metadata
    logger.info('Reading input file metadata')
    fdata, gdata = tomopy.read_als_832h5_metadata(args.input)
    proj_total = int(gdata['nangles'])
    last = proj_total - 1
    sino_total = int(gdata['nslices'])
    ray_total = int(gdata['nrays'])
    px_size = float(gdata['pxsize'])/10  # cm

    # Set parameters for sinograms to read
    step = sino_total // (args.sino_num + 2)
    start = step
    end = step*(args.sino_num + 1)
    sino = (start, end, step)

    # Read full first and last projection to determine center of rotation
    if args.center is None:
        logger.info('Reading full first and last projection for COR')
        first_last, flats, darks, floc = tomopy.read_als_832h5(args.input,
                                                               ind_tomo=(0, last))
        first_last = tomopy.normalize_nf(first_last, flats, darks, floc)
        args.center = tomopy.find_center_pc(first_last[0, :, :],
                                            first_last[1, :, :], tol=0.1)
        logger.info('Detected center: %f', args.center)

    # Read and normalize raw sinograms
    logger.info('Reading raw data')
    tomo, flats, darks, floc = tomopy.read_als_832h5(args.input, sino=sino)
    logger.info('Normalizing raw data')
    tomo = tomopy.normalize_nf(tomo, flats, darks, floc)

    # Remove stripes from sinograms (remove rings)
    logger.info('Preprocessing normalized data')
    if args.ring_remove == 'Tomopy-FW':
        logger.info('Removing stripes from sinograms with %s',
                    args.ring_remove)
        tomo = tomopy.remove_stripe_fw(tomo)
    elif args.ring_remove == 'Tomopy-T':
        logger.info('Removing stripes from sinograms with %s',
                    args.ring_remove)
        tomo = tomopy.remove_stripe_ti(tomo)

    # Pad sinograms with edge values
    npad = int(np.ceil(ray_total*np.sqrt(2)) - ray_total)//2
    tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')
    args.center += npad # account for padding

    filter_name = np.array(args.filter_name, dtype=(str, 16))
    theta = tomopy.angles(tomo.shape[0], 270, 90)

    logger.info('Reconstructing normalized data')
    # Reconstruct sinograms
    rec = tomopy.recon(tomo, theta, center=args.center, emission=False,
                       algorithm=args.algorithm, filter_name=filter_name)
    rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
    rec = rec/px_size

    # Remove rings from reconstruction
    if args.ring_remove == 'Octopus':
        logger.info('Removing rings from reconstructions with %s',
                    args.ring_remove)
        thresh = float(gdata['ring_threshold'])
        thresh_max = float(gdata['upp_ring_value'])
        thresh_min = float(gdata['low_ring_value'])
        theta_min = int(gdata['max_arc_length'])
        rwidth = int(gdata['max_ring_size'])
        rec = tomopy.remove_rings(rec, center_x=args.center, thresh=thresh,
                                  thresh_max=thresh_max, thresh_min=thresh_min,
                                  theta_min=theta_min, rwidth=rwidth)

    # Write reconstruction data to new hdf5 file
    fdata['stage'] = 'fast-tomopy'
    fdata['stage_flow'] = '/raw/' + fdata['stage']
    fdata['stage_version'] = 'fast-tomopy-0.1'
    # WHAT ABOUT uuid ????? Who asigns this???
    del fdata['uuid']  # I'll get rid of it altogether then...

    gdata['Reconstruction_Type'] = 'tomopy-gridrec'
    gdata['ring_removal_method'] = args.ring_remove
    gdata['rfilter'] = args.filter_name

    logger.info('Writing reconstructed data to h5 file')
    write_als_832h5(rec, args.input, fdata, gdata, args.output_file, step)

    return