def readConfiguration(self): super(IterativeRecommender, self).readConfiguration() # set the reduced dimension self.k = int(self.config['num.factors']) # set maximum iteration self.maxIter = int(self.config['num.max.iter']) # set learning rate learningRate = config.LineConfig(self.config['learnRate']) self.lRate = float(learningRate['-init']) self.maxLRate = float(learningRate['-max']) # regularization parameter regular = config.LineConfig(self.config['reg.lambda']) self.regU,self.regI,self.regB= float(regular['-u']),float(regular['-i']),float(regular['-b'])
def readConfiguration(self): super(APR, self).readConfiguration() args = config.LineConfig(self.config['APR']) self.eps = float(args['-eps']) self.regAdv = float(args['-regA']) self.advEpoch = int(args['-advEpoch']) self.negativeCount = 3
def readConfiguration(self): super(DeepRecommender, self).readConfiguration() # set the reduced dimension self.batch_size = int(self.config['batch_size']) # regularization parameter regular = config.LineConfig(self.config['reg.lambda']) self.regU, self.regI, self.regB = float(regular['-u']), float( regular['-i']), float(regular['-b'])
def buildModel(self): # If necessary, you can fix the parameter in ./config/Trust.conf self.trusterModel() # train trusterModel and trusteeModel independently using the same # parameter setting. learningrate = config.LineConfig(self.config['learnRate']) self.lRate = float(learningrate['-init']) self.trusteeModel()
def readConfiguration(self): super(CoFactor, self).readConfiguration() extraSettings = config.LineConfig(self.config['CoFactor']) self.negCount = int(extraSettings['-k']) #the number of negative samples if self.negCount < 1: self.negCount = 1 self.regR = float(extraSettings['-gamma']) self.filter = int(extraSettings['-filter'])
def readConfiguration(self): super(CUNE_BPR, self).readConfiguration() options = config.LineConfig(self.config['CUNE-BPR']) self.walkCount = int(options['-T']) self.walkLength = int(options['-L']) self.walkDim = int(options['-l']) self.winSize = int(options['-w']) self.topK = int(options['-k']) self.s = float(options['-s'])
def readConfiguration(self): super(ESRF, self).readConfiguration() args = config.LineConfig(self.config['ESRF']) self.K = int( args['-K']) #controling the magnitude of adversarial learning self.beta = float(args['-beta']) #the number of alternative neighbors self.n_layers_D = int( args['-n_layer'] ) #the number of layers of the recommendation module (discriminator)
def readConfiguration(self): super(BayesDetector, self).readConfiguration() extraSettings = config.LineConfig(self.config['BayesDetector']) self.k = int(extraSettings['-k']) self.negCount = int( extraSettings['-negCount']) # the number of negative samples if self.negCount < 1: self.negCount = 1 self.regR = float(extraSettings['-gamma']) self.filter = int(extraSettings['-filter']) self.delta = float(extraSettings['-delta']) learningRate = config.LineConfig(self.config['learnRate']) self.lRate = float(learningRate['-init']) self.maxLRate = float(learningRate['-max']) self.maxIter = int(self.config['num.max.iter']) regular = config.LineConfig(self.config['reg.lambda']) self.regU, self.regI = float(regular['-u']), float(regular['-i'])
def readConfiguration(self): super(HME, self).readConfiguration() options = config.LineConfig(self.config['HME']) self.walkCount = int(options['-T']) self.walkLength = int(options['-L']) self.winSize = int(options['-w']) self.alpha = float(options['-alpha']) self.beta = float(options['-beta']) self.epoch = int(options['-ep'])
def readConfiguration(self): super(CUNE_MF, self).readConfiguration() options = config.LineConfig(self.config['CUNE-MF']) self.walkCount = int(options['-T']) self.walkLength = int(options['-L']) self.walkDim = int(options['-l']) self.winSize = int(options['-w']) self.topK = int(options['-k']) self.epoch = int(options['-ep']) self.alpha = float(options['-a'])
def readConfiguration(self): super(IF_BPR, self).readConfiguration() options = config.LineConfig(self.config['IF_BPR']) self.walkLength = int(options['-L']) self.walkDim = int(options['-l']) self.winSize = int(options['-w']) self.topK = int(options['-k']) self.alpha = float(options['-a']) self.epoch = int(options['-ep']) self.neg = int(options['-neg']) self.rate = float(options['-r'])
def readConfiguration(self): super(SocialRecommender, self).readConfiguration() alpha = config.LineConfig(self.config['RSTE']) self.alpha = float(alpha['-alpha'])
def readConfiguration(self): super(LOCABAL, self).readConfiguration() alpha = config.LineConfig(self.config['LOCABAL']) self.alpha = float(alpha['-alpha'])
def readConfiguration(self): super(TBPR, self).readConfiguration() options = config.LineConfig(self.config['TBPR']) self.regT = float(options['-regT'])
def readConfiguration(self): super(Song2vec, self).readConfiguration() options = config.LineConfig(self.config['Song2vec']) self.alpha = float(options['-alpha']) self.topK = int(options['-k'])
def readConfiguration(self): super(SVDPlusPlus, self).readConfiguration() regY = config.LineConfig(self.config['SVDPlusPlus']) self.regY = float(regY['-y'])
def readConfiguration(self): super(SocialFD, self).readConfiguration() eps = config.LineConfig(self.config['SocialFD']) self.alpha = float(eps['-alpha']) self.eta = float(eps['-eta']) self.beta = float(eps['-beta'])
def readConfiguration(self): super(TrustMF, self).readConfiguration() regular = config.LineConfig(self.config['reg.lambda']) self.regB = float(regular['-b']) self.regT = float(regular['-t'])
def readParameters(self): args = config.LineConfig(self.config['AT']) self.eps = float(args['-eps']) self.regAdv = float(args['-regA']) self.advEpoch = int(args['-advEpoch'])
def readConfiguration(self): super(EE, self).readConfiguration() Dim = config.LineConfig(self.config['EE']) self.Dim = int(Dim['-d'])
def readConfiguration(self): super(SoRec, self).readConfiguration() regZ = config.LineConfig(self.config['SoRec']) self.regZ = float(regZ['-z'])
def readConfiguration(self): super(CDAE, self).readConfiguration() args = config.LineConfig(self.config['CDAE']) self.corruption_level = float(args['-co']) self.n_hidden = int(args['-nh'])
def readConfiguration(self): super(RSTE, self).readConfiguration() alpha = config.LineConfig(self.config['RSTE']) self.alpha = float(alpha['-alpha'])
def readConfiguration(self): super(CDAE, self).readConfiguration() eps = config.LineConfig(self.config['CDAE']) self.corruption_level = float(eps['-co']) self.n_hidden = int(eps['-nh']) self.batch_size = int(eps['-batch_size'])
def readConfiguration(self): super(MHCN, self).readConfiguration() args = config.LineConfig(self.config['MHCN']) self.n_layers = int(args['-n_layer']) self.ss_rate = float(args['-ss_rate'])
def readConfiguration(self): super(DiffNet, self).readConfiguration() args = config.LineConfig(self.config['DiffNet']) self.n_layers = int( args['-n_layer'] ) #the number of layers of the recommendation module (discriminator)
def readConfiguration(self): super(SoReg, self).readConfiguration() alpha = config.LineConfig(self.config['SoReg']) self.alpha = float(alpha['-alpha'])
def readConfiguration(self): super(SREE, self).readConfiguration() par = config.LineConfig(self.config['SREE']) self.alpha = float(par['-alpha'])
def readConfiguration(self): super(SocialRecommender, self).readConfiguration() regular = config.LineConfig(self.config['reg.lambda']) self.regS = float(regular['-s'])
def readConfiguration(self): super(DMF, self).readConfiguration() options = config.LineConfig(self.config['DMF']) self.alpha = float(options['-alpha']) self.topK = int(options['-k']) self.negCount = int(options['-neg'])