Example #1
0
 def readConfiguration(self):
     super(IterativeRecommender, self).readConfiguration()
     # set the reduced dimension
     self.k = int(self.config['num.factors'])
     # set maximum iteration
     self.maxIter = int(self.config['num.max.iter'])
     # set learning rate
     learningRate = config.LineConfig(self.config['learnRate'])
     self.lRate = float(learningRate['-init'])
     self.maxLRate = float(learningRate['-max'])
     # regularization parameter
     regular = config.LineConfig(self.config['reg.lambda'])
     self.regU,self.regI,self.regB= float(regular['-u']),float(regular['-i']),float(regular['-b'])
Example #2
0
File: APR.py Project: zwbRocky/RecQ
 def readConfiguration(self):
     super(APR, self).readConfiguration()
     args = config.LineConfig(self.config['APR'])
     self.eps = float(args['-eps'])
     self.regAdv = float(args['-regA'])
     self.advEpoch = int(args['-advEpoch'])
     self.negativeCount = 3
Example #3
0
 def readConfiguration(self):
     super(DeepRecommender, self).readConfiguration()
     # set the reduced dimension
     self.batch_size = int(self.config['batch_size'])
     # regularization parameter
     regular = config.LineConfig(self.config['reg.lambda'])
     self.regU, self.regI, self.regB = float(regular['-u']), float(
         regular['-i']), float(regular['-b'])
Example #4
0
 def buildModel(self):
     # If necessary, you can fix the parameter in ./config/Trust.conf
     self.trusterModel()
     # train trusterModel and trusteeModel independently using the same
     # parameter setting.
     learningrate = config.LineConfig(self.config['learnRate'])
     self.lRate = float(learningrate['-init'])
     self.trusteeModel()
Example #5
0
 def readConfiguration(self):
     super(CoFactor, self).readConfiguration()
     extraSettings = config.LineConfig(self.config['CoFactor'])
     self.negCount = int(extraSettings['-k']) #the number of negative samples
     if self.negCount < 1:
         self.negCount = 1
     self.regR = float(extraSettings['-gamma'])
     self.filter = int(extraSettings['-filter'])
Example #6
0
 def readConfiguration(self):
     super(CUNE_BPR, self).readConfiguration()
     options = config.LineConfig(self.config['CUNE-BPR'])
     self.walkCount = int(options['-T'])
     self.walkLength = int(options['-L'])
     self.walkDim = int(options['-l'])
     self.winSize = int(options['-w'])
     self.topK = int(options['-k'])
     self.s = float(options['-s'])
Example #7
0
File: ESRF.py Project: lugt/RecQ
 def readConfiguration(self):
     super(ESRF, self).readConfiguration()
     args = config.LineConfig(self.config['ESRF'])
     self.K = int(
         args['-K'])  #controling the magnitude of adversarial learning
     self.beta = float(args['-beta'])  #the number of alternative neighbors
     self.n_layers_D = int(
         args['-n_layer']
     )  #the number of layers of the recommendation module (discriminator)
Example #8
0
    def readConfiguration(self):
        super(BayesDetector, self).readConfiguration()
        extraSettings = config.LineConfig(self.config['BayesDetector'])
        self.k = int(extraSettings['-k'])
        self.negCount = int(
            extraSettings['-negCount'])  # the number of negative samples
        if self.negCount < 1:
            self.negCount = 1

        self.regR = float(extraSettings['-gamma'])
        self.filter = int(extraSettings['-filter'])
        self.delta = float(extraSettings['-delta'])
        learningRate = config.LineConfig(self.config['learnRate'])
        self.lRate = float(learningRate['-init'])
        self.maxLRate = float(learningRate['-max'])
        self.maxIter = int(self.config['num.max.iter'])
        regular = config.LineConfig(self.config['reg.lambda'])
        self.regU, self.regI = float(regular['-u']), float(regular['-i'])
Example #9
0
 def readConfiguration(self):
     super(HME, self).readConfiguration()
     options = config.LineConfig(self.config['HME'])
     self.walkCount = int(options['-T'])
     self.walkLength = int(options['-L'])
     self.winSize = int(options['-w'])
     self.alpha = float(options['-alpha'])
     self.beta = float(options['-beta'])
     self.epoch = int(options['-ep'])
Example #10
0
 def readConfiguration(self):
     super(CUNE_MF, self).readConfiguration()
     options = config.LineConfig(self.config['CUNE-MF'])
     self.walkCount = int(options['-T'])
     self.walkLength = int(options['-L'])
     self.walkDim = int(options['-l'])
     self.winSize = int(options['-w'])
     self.topK = int(options['-k'])
     self.epoch = int(options['-ep'])
     self.alpha = float(options['-a'])
Example #11
0
 def readConfiguration(self):
     super(IF_BPR, self).readConfiguration()
     options = config.LineConfig(self.config['IF_BPR'])
     self.walkLength = int(options['-L'])
     self.walkDim = int(options['-l'])
     self.winSize = int(options['-w'])
     self.topK = int(options['-k'])
     self.alpha = float(options['-a'])
     self.epoch = int(options['-ep'])
     self.neg = int(options['-neg'])
     self.rate = float(options['-r'])
Example #12
0
 def readConfiguration(self):
     super(SocialRecommender, self).readConfiguration()
     alpha = config.LineConfig(self.config['RSTE'])
     self.alpha = float(alpha['-alpha'])
Example #13
0
 def readConfiguration(self):
     super(LOCABAL, self).readConfiguration()
     alpha = config.LineConfig(self.config['LOCABAL'])
     self.alpha = float(alpha['-alpha'])
Example #14
0
 def readConfiguration(self):
     super(TBPR, self).readConfiguration()
     options = config.LineConfig(self.config['TBPR'])
     self.regT = float(options['-regT'])
Example #15
0
 def readConfiguration(self):
     super(Song2vec, self).readConfiguration()
     options = config.LineConfig(self.config['Song2vec'])
     self.alpha = float(options['-alpha'])
     self.topK = int(options['-k'])
Example #16
0
 def readConfiguration(self):
     super(SVDPlusPlus, self).readConfiguration()
     regY = config.LineConfig(self.config['SVDPlusPlus'])
     self.regY = float(regY['-y'])
Example #17
0
 def readConfiguration(self):
     super(SocialFD, self).readConfiguration()
     eps = config.LineConfig(self.config['SocialFD'])
     self.alpha = float(eps['-alpha'])
     self.eta = float(eps['-eta'])
     self.beta = float(eps['-beta'])
Example #18
0
 def readConfiguration(self):
     super(TrustMF, self).readConfiguration()
     regular = config.LineConfig(self.config['reg.lambda'])
     self.regB = float(regular['-b'])
     self.regT = float(regular['-t'])
Example #19
0
 def readParameters(self):
     args = config.LineConfig(self.config['AT'])
     self.eps = float(args['-eps'])
     self.regAdv = float(args['-regA'])
     self.advEpoch = int(args['-advEpoch'])
Example #20
0
 def readConfiguration(self):
     super(EE, self).readConfiguration()
     Dim = config.LineConfig(self.config['EE'])
     self.Dim = int(Dim['-d'])
Example #21
0
 def readConfiguration(self):
     super(SoRec, self).readConfiguration()
     regZ = config.LineConfig(self.config['SoRec'])
     self.regZ = float(regZ['-z'])
Example #22
0
 def readConfiguration(self):
     super(CDAE, self).readConfiguration()
     args = config.LineConfig(self.config['CDAE'])
     self.corruption_level = float(args['-co'])
     self.n_hidden = int(args['-nh'])
Example #23
0
File: RSTE.py Project: nonva/RecQ
 def readConfiguration(self):
     super(RSTE, self).readConfiguration()
     alpha = config.LineConfig(self.config['RSTE'])
     self.alpha = float(alpha['-alpha'])
Example #24
0
 def readConfiguration(self):
     super(CDAE, self).readConfiguration()
     eps = config.LineConfig(self.config['CDAE'])
     self.corruption_level = float(eps['-co'])
     self.n_hidden = int(eps['-nh'])
     self.batch_size = int(eps['-batch_size'])
Example #25
0
 def readConfiguration(self):
     super(MHCN, self).readConfiguration()
     args = config.LineConfig(self.config['MHCN'])
     self.n_layers = int(args['-n_layer'])
     self.ss_rate = float(args['-ss_rate'])
Example #26
0
 def readConfiguration(self):
     super(DiffNet, self).readConfiguration()
     args = config.LineConfig(self.config['DiffNet'])
     self.n_layers = int(
         args['-n_layer']
     )  #the number of layers of the recommendation module (discriminator)
Example #27
0
 def readConfiguration(self):
     super(SoReg, self).readConfiguration()
     alpha = config.LineConfig(self.config['SoReg'])
     self.alpha = float(alpha['-alpha'])
Example #28
0
 def readConfiguration(self):
     super(SREE, self).readConfiguration()
     par = config.LineConfig(self.config['SREE'])
     self.alpha = float(par['-alpha'])
Example #29
0
 def readConfiguration(self):
     super(SocialRecommender, self).readConfiguration()
     regular = config.LineConfig(self.config['reg.lambda'])
     self.regS = float(regular['-s'])
Example #30
0
File: DMF.py Project: zkalan/Yue
 def readConfiguration(self):
     super(DMF, self).readConfiguration()
     options = config.LineConfig(self.config['DMF'])
     self.alpha = float(options['-alpha'])
     self.topK = int(options['-k'])
     self.negCount = int(options['-neg'])