Example #1
0
def prepocess():
    images = get_files(PRE_IMAGE_PATH)
    labels = get_files(PRE_LABEL_PATH)
    files = get_files(PRE_IMAGE_PATH, prefix=False)

    def normlize_data(image):
        vaild_area = (image >= 0)
        invaild_area = (image < 0)

        image[vaild_area] = np.log(image[vaild_area] + 1)

        i_mean = image[vaild_area].mean()
        i_std = image[vaild_area].std()

        low = i_mean - 3.5 * i_std
        high = i_mean + 3.5 * i_std
        image = (image - low) / (high - low)

        image[invaild_area] = -1
        return image

    for f_i, f_l, f in tqdm(zip(images, labels, files)):
        im = load_image(f_i).get_data()
        label = load_image(f_l).get_data()

        im = normlize_data(im)
        label[label == 2] = 1
        np.save(IMAGE_PATH + f[:-7] + '.npy', im)
        np.save(LABEL_PATH + f[:-7] + '.npy', label)
Example #2
0
def predict_test_data():

    model_files = get_files(MODEL_PATH, prefix=False)
    models = []
    for file_name in model_files:

        m_setting = file_name.split('_')
        model_setting = {}
        model_setting['modelname'] = m_setting[0]
        model_setting[
            'axis'] = None if m_setting[2] == 'None' else m_setting[2]
        model_setting['loss'] = diceLoss
        if m_setting[3] == 'ostu':
            model_setting['postPocess'] = ostu
        elif m_setting[3] == 'around':
            model_setting['postPocess'] = threshold_filter
        else:
            raise NameError("postPocess error")

        model_setting['path'] = MODEL_PATH + file_name

        models.append(model_setting)

    test_data = get_files(TEST_DATA, prefix=False)

    seg_recovery(test_data, models)
Example #3
0
def EDA_warp():
    files = get_files(PRE_IMAGE_PATH, prefix=False)

    labels = []
    images = []
    for i in range(len(files)):
        im = load_image(PRE_IMAGE_PATH + files[i]).get_data()
        if im.shape == (256, 256, 180, 1):
            labels.append(PRE_LABEL_PATH + files[i])
            images.append(PRE_IMAGE_PATH + files[i])

    EDA(labels, images, '180')

    labels = []
    images = []
    for i in range(len(files)):
        im = load_image(PRE_IMAGE_PATH + files[i]).get_data()
        if im.shape == (256, 256, 166, 1):
            labels.append(PRE_LABEL_PATH + files[i])
            images.append(PRE_IMAGE_PATH + files[i])
    EDA(labels, images, '256_166')

    labels = []
    images = []
    for i in range(len(files)):
        im = load_image(PRE_IMAGE_PATH + files[i]).get_data()
        if im.shape == (192, 192, 160, 1):
            labels.append(PRE_LABEL_PATH + files[i])
            images.append(PRE_IMAGE_PATH + files[i])
    EDA(labels, images, '192')
Example #4
0
def prepocess():
    images = get_files(PRE_IMAGE_PATH)
    labels = get_files(PRE_LABEL_PATH)
    files = get_files(PRE_IMAGE_PATH, prefix=False)

    for f_i, f_l, f in tqdm(zip(images, labels, files)):
        im = load_image(f_i).get_data()
        label = load_image(f_l).get_data()

        label[label == 2] = 1

        # im = cv2.resize(im,(192,192,160,1),interpolation=cv2.INTER_LINEAR)
        # print(im.shape)
        # im = normlize_data(im)

        np.save(IMAGE_PATH + f[:-7] + '.npy', im)
        np.save(LABEL_PATH + f[:-7] + '.npy', label)
Example #5
0
def test():
    files = get_files(PRE_LABEL_PATH)
    h1 = []
    h2 = []
    for f in files:
        label = load_image(f).get_data()
        h1.append(np.sum(label==1))
        h2.append(np.sum(label==2))
    print(sorted(h1))
    print(sorted(h2))
Example #6
0
def get_shape():
    images = get_files(PRE_IMAGE_PATH, prefix=False)
    im_shapes = {}
    for f in images:
        im = load_image(PRE_IMAGE_PATH + f)
        print(im.__array__)

        im = im.get_data()
        im_shapes[f] = str(im.shape[2])

    with open(INFO + 'shape.json', 'w') as f:
        f.write(json.dumps(im_shapes, indent=4, separators=(',', ': ')))
Example #7
0
def main():
    from sklearn.cross_validation import KFold
    files = get_files(LABEL_PATH, prefix=False)

    kf = KFold(len(files), n_folds=K, shuffle=True)

    for i, (train_index, valid_index) in enumerate(kf):
        print('第{}次训练...'.format(i))
        trainset = files[train_index]
        validset = files[valid_index]

        model = segment_model(valfiles=validset)

        train_model(model, trainset, batchsize=3)

        break
Example #8
0
def main(loss,
         modelname='Unet',
         axis=None,
         metric=dice_metric,
         postPocess=None,
         postPocess_str=None):
    from sklearn.cross_validation import KFold
    files = get_files(LABEL_PATH, prefix=False)

    K = 10
    kf = KFold(len(files), n_folds=K, shuffle=True)

    for i, (train_index, valid_index) in enumerate(kf):
        print('第{}次训练...'.format(i))
        trainset = files[train_index]
        validset = files[valid_index]

        model = segment_model(valfiles=validset,
                              modelname=modelname,
                              axis=axis,
                              metric=metric,
                              loss=loss,
                              postPocess=postPocess)
        if axis == None:
            model_id = modelname + '_' + str(
                i) + '_None_' + postPocess_str + '_'
        else:
            model_id = modelname + '_' + str(
                i) * 2 + '_' + axis + '_' + postPocess_str + '_'

        best_score = train_model(model,
                                 trainset,
                                 batchsize=8,
                                 model_name=model_id,
                                 axis=axis)
        print(str(i), ': ', best_score)
Example #9
0
    def run(self):
        done = 0
        fail = 0
        ignored = 0
        not_allowed = 0

        total_on_folders = 0
        for folder in self.main.folders:
            files = get_files(folder)
            if self.main.code == 3:
                files = self.main.sort_file_list(folder, files,
                                                 self.main.arg['i3'],
                                                 self.main.arg['i4'])
            total_on_a_folder = 0
            for a_file in files:
                filename, ext = get_filename_extension(a_file)
                status = self.main.check_for_allow_and_ignore(
                    a_file, filename, ext)
                if status == 1:
                    ignored += 1
                    self.outSignal.emit(
                        f"<b>[+] - Ignored :</b> {join(folder, a_file)}")
                elif status == 2:
                    not_allowed += 1
                    self.outSignal.emit(
                        f"<b>[+] - Not Allowed :</b> {join(folder, a_file)}")
                else:
                    total_on_a_folder += 1
                    total_on_folders += 1

                    try:
                        new_name = self.main.get_new_name(
                            a_file, filename, ext, folder, total_on_a_folder,
                            total_on_folders)
                    except Exception as e:
                        print(e)
                        self.outSignal.emit(
                            f"<b>[+] - Error :</b> {join(folder, a_file)}  <b>>>></b> Error on making new name"
                        )
                        self.outSignal.emit(f"<b>[+] - Stopping Renaming</b>")
                        self.main.do_log(False, join(folder, a_file), '')
                        break

                    if rename_file(folder, a_file, new_name):
                        done += 1
                        self.outSignal.emit(
                            f"<b>[+] - Done :</b> {join(folder, a_file)}  <b>>></b>  {new_name}"
                        )
                        self.main.do_log(True, join(folder, a_file), new_name)
                    else:
                        fail += 1
                        self.main.do_log(False, join(folder, a_file), new_name)
                        self.outSignal.emit(
                            f"<b>[+] - Failed :</b> {join(folder, a_file)}  <b>>></b>  {new_name}"
                        )
        self.outSignal.emit("")
        self.outSignal.emit(f"<b>[+] - Renaming Finished</b>")
        self.outSignal.emit("")
        total = done + fail + ignored + not_allowed
        self.outSignal.emit(
            f"<table> <tr> <td><b>[+] - Total</b></td> <td>:</td> <td>{total}</td> </tr> <tr> <td><b>[+] - Renamed</b></td> <td>:</td> <td>{done}</td> </tr> <tr> <td><b>[+] - Failed</b></td> <td>:</td> <td>{fail}</td> </tr> <tr> <td><b>[+] - Not Allowed</b></td> <td>:</td> <td>{not_allowed}</td> </tr> <tr> <td><b>[+] - Ignored</b></td> <td>:</td> <td>{ignored}</td> </tr> </table>"
        )
        self.outSignal.emit("")
        if self.main.log_file is not None and self.main.make_log:
            self.main.log_file.close()
            if self.main.make_log_error:
                self.outSignal.emit(f"[+] - <b>Log Failed</b>")
            else:
                self.outSignal.emit(
                    f"[+] - Log path : <b>{str(Path('logs.txt').absolute())}</b>"
                )
        self.outSignal.emit(f"[+] - Press Finish to quit")
Example #10
0
def get_images_info():
    def get_info(image, label):
        def fune_range(info, target, value):
            for i, t in enumerate(['x', 'y', 'z', 'voxel']):
                if value[i] < info[target + '_' + t][0]:
                    info[target + '_' + t][0] = value[i]

                if value[i] > info[target + '_' + t][1]:
                    info[target + '_' + t][1] = value[i]
            return info

        info = {
            'brain_x': [256, 0],
            'brain_y': [256, 0],
            'brain_z': [256, 0],
            'brain_voxel': [10000, -10000],
            'h1_x': [256, 0],
            'h1_y': [256, 0],
            'h1_z': [256, 0],
            'h1_voxel': [10000, -10000],
            'h2_x': [256, 0],
            'h2_y': [256, 0],
            'h2_z': [256, 0],
            'h2_voxel': [10000, -10000],
        }
        info['shape'] = image.shape
        shape = image.shape

        for i in range(shape[0]):
            for j in range(shape[1]):
                for k in range(shape[2]):
                    value = (i, j, k, int(image[i, j, k, 0]))
                    if label[i, j, k, 0] == 1:
                        info = fune_range(info, 'h1', value)
                    elif label[i, j, k, 0] == 2:
                        info = fune_range(info, 'h2', value)
                    elif image[i, j, k, 0] != -1:
                        info = fune_range(info, 'brain', value)
        return info

    images_info = {}
    files = get_files(PRE_IMAGE_PATH, prefix=False)

    image_files = [PRE_IMAGE_PATH + f for f in files]
    label_files = [PRE_LABEL_PATH + f for f in files]

    for l_f, im_f, name in tqdm(zip(label_files, image_files, files)):
        # label, image = load_image(l_f).get_data(), load_image(im_f).get_data()
        label, image = sitk.ReadImage(l_f), sitk.ReadImage(im_f)
        label, image = sitk.GetArrayFromImage(label), sitk.GetArrayFromImage(
            image)
        label, image = label.transpose((1, 2, 0)), image.transpose((1, 2, 0))
        label, image = label[:, :, :, np.newaxis], image[:, :, :, np.newaxis]

        images_info[name] = get_info(image, label)

    variables = [
        'brain_x',
        'brain_y',
        'brain_z',
        'brain_voxel',
        'h1_x',
        'h1_y',
        'h1_z',
        'h1_voxel',
        'h2_x',
        'h2_y',
        'h2_z',
        'h2_voxel',
    ]
    for file in images_info.keys():
        for vari in variables:
            images_info[file][vari+'_range'] = \
                images_info[file][vari][1] - images_info[file][vari][0]
    for file in images_info.keys():
        images_info[file]['h_z_range'] = \
            images_info[file]['h2_z'][1] - images_info[file]['h1_z'][0]

    for file in images_info.keys():
        for axis in ['x', 'y', 'z']:
            for h in ['h1_', 'h2_']:
                images_info[file]['effec_' + h + axis] = [0, 0]
                images_info[file]['effec_' + h + axis][0] = images_info[file][
                    h + axis][0] - images_info[file]['brain_' + axis][0]
                images_info[file]['effec_' + h + axis][1] = images_info[file][
                    h + axis][1] - images_info[file]['brain_' + axis][0]

    with open(INFO + 'image_info.json', 'w') as f:
        f.write(json.dumps(images_info, indent=4, separators=(',', ': ')))