#-------------------------------------------------- # useful functions #------------------------------------------------- None if __name__ == "__main__": #initialise dataset print "initialising dataset" workspace, params = toolbox.initialise('foybrook.su') #apply TAR print "applying true amplitude recovery" params['gamma'] = 3 toolbox.tar(workspace, None, **params) #lets see how many cdps there are print np.unique(workspace['cdp'])[25::45].tolist() params['smoother'] = 5 #copy your list of cdps here... it will make it easier later cdps = [219, 264, 309, 354, 399, 444, 489, 534, 579] #~ params['velocities'] = np.arange(2000,6000,50) #~ for cdp in cdps: #~ gather = workspace[workspace['cdp'] == cdp] #~ toolbox.agc(gather, None, **params) #~ toolbox.semb(gather, **params)
import toolbox import pylab import numpy as np model, mparams = toolbox.initialise("model_filtered.su") gathers, params = toolbox.initialise("fk_nmo_gathers.su") params['model'] = model params['gate'] = (.4, 1.0) #seconds params['maxshift'] = 4 #samples toolbox.trim(gathers, None, **params) toolbox.apply_statics(gathers, None, **params) stack = toolbox.stack(gathers, None, **params) params['gamma'] = -1 toolbox.tar(stack, None, **params) stack.tofile("trim_stack2.su")
import pylab #-------------------------------------------------- # useful functions #------------------------------------------------- None if __name__ == "__main__": #initialise dataset print "initialising dataset" workspace, params = toolbox.initialise('al_dynamite.su') #apply tar params['gamma'] = 5 toolbox.tar(workspace, None, **params) #copy vels from previous exercise vels = {} vels[225] = (0.06, 1537.38) , (0.28, 2876.21) , (0.87, 4608.10) vels[270] = (0.05, 1525.09) , (0.18, 2483.16) , (0.36, 3171.00) , (0.66, 4079.93) , (0.98, 4816.90) vels[315] = (0.04, 1365.42) , (0.14, 2728.82) , (0.22, 3134.15) , (0.57, 4116.78) , (0.74, 4571.25) , (0.97, 5013.43) vels[360] = (0.04, 1697.05) , (0.10, 2520.01) , (0.21, 2937.62) , (0.43, 3244.70) , (0.64, 3981.67) , (0.98, 4239.61) vels[405] = (0.06, 1439.11) , (0.27, 2753.38) , (0.49, 3957.10) , (0.97, 5381.92) vels[450] = (0.06, 1340.85) , (0.41, 2741.10) , (0.52, 3625.47) , (0.02, 1144.32) , (0.29, 3060.45) , (0.54, 3711.45) , (0.97, 4313.31) vels[495] = (0.04, 1611.07) , (0.11, 3072.74) , (0.23, 3318.39) , (0.35, 3772.86) , (0.48, 3981.67) , (0.94, 5099.41) vels[539] = (0.04, 2028.69) , (0.11, 3072.74) , (0.32, 3883.41) , (0.51, 4485.27) , (0.96, 5222.24) vels[584] = (0.06, 1623.36) , (0.20, 2495.44) , (0.32, 3121.87) , (0.95, 4411.57) #build vels
#initialise dataset #~ data, params = toolbox.initialise("geometries.su") #trim data #~ params['ns'] = 1500 #~ data = toolbox.slice(data, None, **params) #~ data.tofile("geom_short.su") #initialise dataset data, params = toolbox.initialise("geom_short.su") #agc #~ toolbox.agc(data, None, **params) params['gamma'] = 1.5 toolbox.tar(data, None, **params) kills = [270, 300, 374, 614] #fldr mask = toolbox.build_mask(data['fldr'], kills) data = data[mask] data.tofile("prepro.su") #display #~ params['primary'] = 'fldr' #~ params['secondary'] = 'tracf' #~ params['wiggle'] = True #~ toolbox.display(data, **params) #~ pylab.show()
import toolbox import numpy as np import pylab #-------------------------------------------------- # useful functions #------------------------------------------------- None if __name__ == "__main__": #initialise dataset print "initialising dataset" workspace, params = toolbox.initialise('foybrook.su') #find our test CDP #~ print np.unique(workspace['cdp']) #extract it cdp = workspace[workspace['cdp'] == 396] #display it #~ toolbox.display(cdp, None, **params) params['gamma'] = 6 toolbox.tar(cdp, None, **params) #display it toolbox.display(cdp, None, **params) pylab.show()