Example #1
0
def sparse_accuracy(y_true, y_pred):
    # y_true需要重新明确一下shape和dtype
    y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
    y_true = K.cast(y_true, 'int32')
    # 计算准确率
    y_pred = K.cast(K.argmax(y_pred, axis=2), 'int32')
    return K.mean(K.cast(K.equal(y_true, y_pred), K.floatx()))
Example #2
0
 def sparse_accuracy(self, y_true, y_pred):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2)
     mask = K.cast(mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 逐标签取最大来粗略评测训练效果
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     return K.sum(isequal * mask) / K.sum(mask)
Example #3
0
 def dense_accuracy(self, y_true, y_pred):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是one hot形式
     """
     y_true = K.argmax(y_true, 2)
     return self.sparse_accuracy(y_true, y_pred)
 def compute_classification_acc(self, inputs, mask=None):
     _, _, y_pred, _, y_true = inputs
     equal = K.equal(K.cast(K.argmax(y_pred, axis=-1), 'int32'),
                     K.cast(y_true, 'int32'))
     return K.cast(equal, K.floatx()) / K.cast(
         K.shape(y_true)[0], K.floatx())