Example #1
0
def _get_slices_dim_list(pc_folder, file_list_txt):
    center_slices_x = []
    center_slices_y = []
    center_slices_z = []
    data_folder = DataFolder(pc_folder, file_list_txt)
    for file_idx in range(show_pc_number):
        data_folder.print_idx(file_idx)
        file_path = data_folder.get_file_path(file_idx)
        scan = ScanWrapper(file_path)
        slice_x, slice_y, slice_z = scan.get_center_slices()
        center_slices_x.append(slice_x)
        center_slices_y.append(slice_y)
        center_slices_z.append(slice_z)

    return center_slices_x, center_slices_y, center_slices_z
Example #2
0
class GetLossBetweenFolder(AbstractParallelRoutine):
    def __init__(self, config, in_folder_1, in_folder_2, file_list_txt):
        super().__init__(config, in_folder_1, file_list_txt)
        self._in_data_folder_2 = DataFolder(in_folder_2, file_list_txt)
        self._nrmse_diff = []

    def get_nrmse(self):
        return self._nrmse_diff

    def print_file_list(self):
        file_list = self._in_data_folder.get_data_file_list()
        for idx in range(len(file_list)):
            print(f'The {idx}th file is {file_list[idx]}')

    def _run_single_scan(self, idx):
        in_file_1_path = self._in_data_folder.get_file_path(idx)
        in_file_2_path = self._in_data_folder_2.get_file_path(idx)

        in_img_1 = ScanWrapper(in_file_1_path).get_data()
        in_img_2 = ScanWrapper(in_file_2_path).get_data()

        nrmse = compare_nrmse(np.abs(in_img_1), np.abs(in_img_2))
        self._nrmse_diff.append(nrmse)
Example #3
0
class AverageScans:
    def __init__(self,
                 config,
                 in_folder=None,
                 data_file_txt=None,
                 in_data_folder_obj=None):
        self._data_folder = None
        if in_data_folder_obj is None:
            self._data_folder = DataFolder(in_folder, data_file_txt)
        else:
            self._data_folder = in_data_folder_obj
        self._standard_ref = ScanWrapper(self._data_folder.get_first_path())
        self._num_processes = config['num_processes']

    def get_average_image_union(self, save_path):
        im_shape = self._get_std_shape()

        average_union = np.zeros(im_shape)
        average_union.fill(np.nan)
        non_null_mask_count_image = np.zeros(im_shape)

        chunk_list = self._data_folder.get_chunks_list(self._num_processes)

        pool = Pool(processes=self._num_processes)

        print('Average in union')
        print('Step.1 Summation')
        image_average_union_result_list = [
            pool.apply_async(self._sum_images_union, (file_idx_chunk, ))
            for file_idx_chunk in chunk_list
        ]
        for thread_idx in range(len(image_average_union_result_list)):
            result = image_average_union_result_list[thread_idx]
            result.wait()
            print(
                f'Thread with idx {thread_idx} / {len(image_average_union_result_list)} is completed'
            )
            print('Adding to averaged_image...')
            averaged_image_chunk = result.get()
            average_union = self._add_image_union(average_union,
                                                  averaged_image_chunk)
            print('Done.')

        print('Step.2 Non-nan counter')
        non_null_mask_count_result = [
            pool.apply_async(self._sum_non_null_count, (file_idx_chunk, ))
            for file_idx_chunk in chunk_list
        ]
        for thread_idx in range(len(non_null_mask_count_result)):
            result = non_null_mask_count_result[thread_idx]
            result.wait()
            print(
                f'Thread with idx {thread_idx} / {len(non_null_mask_count_result)} is completed'
            )
            print('Adding to averaged_image...')
            averaged_image_chunk = result.get()
            non_null_mask_count_image = np.add(non_null_mask_count_image,
                                               averaged_image_chunk)
            print('Done.')

        average_union = np.divide(average_union,
                                  non_null_mask_count_image,
                                  out=average_union,
                                  where=non_null_mask_count_image > 0)

        self._standard_ref.save_scan_same_space(save_path, average_union)
        print('Done.')

    def _sum_images_union(self, chunk_list):
        print('Sum images, union non-null region. Loading images...')
        im_shape = self._get_std_shape()
        sum_image = np.zeros(im_shape)
        sum_image.fill(np.nan)

        for id_file in chunk_list:
            file_path = self._data_folder.get_file_path(id_file)
            self._data_folder.print_idx(id_file)

            im = nib.load(file_path)
            im_data = im.get_data()
            sum_image = self._add_image_union(sum_image, im_data)

        return sum_image

    def _sum_non_null_count(self, chunk_list):
        print('Count non-null per voxel. Loading images...')
        im_shape = self._get_std_shape()
        sum_image = np.zeros(im_shape)

        for id_file in chunk_list:
            file_path = self._data_folder.get_file_path(id_file)
            self._data_folder.print_idx(id_file)
            im = nib.load(file_path)
            im_data = im.get_data()

            sum_image = np.add(sum_image,
                               1,
                               out=sum_image,
                               where=np.logical_not(np.isnan(im_data)))

        return sum_image

    def _get_std_shape(self):
        return self._standard_ref.get_data().shape

    @staticmethod
    def _add_image_inter(image1, image2):
        return np.add(image1,
                      image2,
                      out=np.full_like(image1, np.nan),
                      where=np.logical_not(
                          np.logical_or(np.isnan(image1), np.isnan(image2))))

    @staticmethod
    def _add_image_union(image1, image2):
        add_image = np.full_like(image1, np.nan)
        add_image[np.logical_not(
            np.logical_and(np.isnan(image1), np.isnan(image2)))] = 0

        add_image = np.add(add_image,
                           image1,
                           out=add_image,
                           where=np.logical_not(np.isnan(image1)))
        add_image = np.add(add_image,
                           image2,
                           out=add_image,
                           where=np.logical_not(np.isnan(image2)))

        return add_image

    @staticmethod
    def sum_non_null_count(file_list, in_folder):
        print('Count non-null per voxel. Loading images...')
        im_temp = nib.load(os.path.join(in_folder, file_list[0]))
        im_temp_data = im_temp.get_data()

        sum_image = np.zeros_like(im_temp_data)

        for id_file in range(len(file_list)):
            file_name = file_list[id_file]
            print('%s (%d/%d)' % (file_name, id_file, len(file_list)))
            file_path = os.path.join(in_folder, file_name)
            im = nib.load(file_path)
            im_data = im.get_data()

            sum_image = np.add(sum_image,
                               1,
                               out=sum_image,
                               where=np.logical_not(np.isnan(im_data)))

        return sum_image
Example #4
0
class ScanFolderConcatBatchReader(AbstractParallelRoutine):
    def __init__(self,
                 config,
                 in_ori_folder,
                 in_jac_folder,
                 batch_size,
                 file_list_txt=None):
        super().__init__(config, in_ori_folder, file_list_txt)
        self._in_jac_folder = DataFolder(in_jac_folder, file_list_txt)
        self._ref_ori = ScanWrapper(self._in_data_folder.get_file_path(0))
        self._ref_jac = ScanWrapper(self._in_jac_folder.get_file_path(0))
        self._chunk_list = self._in_data_folder.get_chunks_list_batch_size(
            batch_size)
        self._data_matrix = []
        self._cur_idx = 0

    def read_data(self, idx_batch):
        self._reset_cur_idx()

        print(f'Reading scans from folder {self._in_data_folder.get_folder()}',
              flush=True)
        tic = time.perf_counter()
        cur_batch = self._chunk_list[idx_batch]
        self._init_data_matrix(len(cur_batch))
        self.run_non_parallel(cur_batch)
        toc = time.perf_counter()
        print(f'Done. {toc - tic:0.4f} (s)', flush=True)

    def num_batch(self):
        return len(self._chunk_list)

    def get_data_matrix(self):
        return self._data_matrix

    def save_flat_data(self, data_array, idx, out_folder):
        out_path_ori = os.path.join(out_folder, f'pc_ori_{idx}.nii.gz')
        out_path_jac = os.path.join(out_folder, f'pc_jac_{idx}.nii.gz')

        ori_data_flat = data_array[:self._ref_ori.get_number_voxel()]
        jac_data_flat = data_array[self._ref_ori.get_number_voxel():]

        self._ref_ori.save_scan_flat_img(ori_data_flat, out_path_ori)
        self._ref_jac.save_scan_flat_img(jac_data_flat, out_path_jac)

    def get_ref(self):
        return self._ref_ori

    def _run_single_scan(self, idx):
        in_ori_data = ScanWrapper(
            self._in_data_folder.get_file_path(idx)).get_data()
        in_jac_data = ScanWrapper(
            self._in_jac_folder.get_file_path(idx)).get_data()

        self._data_matrix[self._cur_idx, :self._ref_ori.get_number_voxel(
        )] = convert_3d_2_flat(in_ori_data)
        self._data_matrix[
            self._cur_idx,
            self._ref_ori.get_number_voxel():] = convert_3d_2_flat(in_jac_data)

        self._cur_idx += 1

    def _init_data_matrix(self, num_sample):
        num_features = self._get_number_of_voxel()

        del self._data_matrix
        self._data_matrix = np.zeros((num_sample, num_features))

    def _get_number_of_voxel(self):
        return self._get_number_of_voxel_ori() + self._get_number_of_voxel_jac(
        )

    def _get_number_of_voxel_ori(self):
        return self._ref_ori.get_number_voxel()

    def _get_number_of_voxel_jac(self):
        return self._ref_jac.get_number_voxel()

    def _reset_cur_idx(self):
        self._cur_idx = 0