def __init__(self, x, y, z, ex=None, ey=None): assert ex is None x = Coord(x, ex) y = Coord(y, ey) z = np.asarray(z, dtype=self.dtype) assert x.v.shape + y.v.shape == z.shape pin(locals())
def __init__(self, pdfset, values): assert isinstance(pdfset, PDFSet) if isinstance(values, PDFInput): inp = values values = AutoDict(self._from_input) else: assert isinstance(values, (Sequence, np.ndarray)) assert len(pdfset) == len(values) pin(locals())
def __init__(self, v, e=None): v = np.asarray(v) assert v.ndim == 1 if e is None: e = np.zeros_like(v, dtype=bool) else: e = np.asarray(e, dtype=bool) assert e.shape == v.shape e[0] = e[-1] = True pin(locals())
def __init__( self, label=None, xtitle=None, ytitle="Entries", binning=[], unit=None, metadata={}, register=True, ): pin(locals())
def __init__(self, path, config=None): path = Path(path) if path.suffix == ".info" and path.is_file(): config = parse_config(path, config) path = path.parent elif path.is_dir(): config = parse_config( path.joinpath(path.name).with_suffix(".info"), config) else: raise ValueError("path not understood: %r" % path) _pdfs = CacheDict(self._make_pdf) pin(locals())
def __init__(self, analysis, category, variable, hists, config_inst, year): if not self._processes: raise Exception("Processes have to be defined!") if not issubclass(self._processes, IntEnum): raise Exception( f"{self.processes} has to be subclassed from <IntEnum>") # e.g.: category = "ee_2b" channel = category.split("_")[0] _nuisances_names = [] _valid_processes = [] _nuisances_renaming = {} _newhists = {} console = Console() pin(locals())
def auto(cls, model_path, **kwargs): if not isinstance(model_path, dict): model_path = dict(default=model_path) tmp = TemporaryDirectory(prefix="tf_server_ahoc") tmp_path = Path(tmp.name) dirs = {} for model, path in model_path.items(): path = Path(path) if not path.is_dir(): raise RuntimeError("%s: %s is not a dir" % (model, path)) b = tmp_path.joinpath(model) dirs[model] = b.absolute().as_posix() if path.joinpath("saved_model.pb").is_file(): b.mkdir() b = b.joinpath("1") b.symlink_to(path.absolute(), True) del model, path, b if len(dirs) > 1: mc = tmp_path.joinpath("model_config.txt.pb") kwargs["model_config_file"] = mc.absolute() with mc.open("w") as f: f.write( str( ModelServerConfig(model_config_list=ModelConfigList( config=[ ModelConfig(name=key, base_path=value, model_platform="tensorflow") for key, value in dirs.items() ])))) else: ((kwargs["model_name"], kwargs["model_base_path"]), ) = dirs.items() kwargs.setdefault("grpc_socket_path", tmp_path.joinpath("sock").absolute()) self = cls.relieable(**kwargs) pin(locals(), cls) return self
def __init__(self, x, y, e=None): x = Coord(x, e) del e pin(locals())
def __init__(self, block, xfx): pin(locals())
def __init__(self, config): pin(locals()) # assert None not in set(map(self.threshold, flavors)) assert None not in set(map(self.mass, flavors))
def __init__(self, func): assert callable(func) pin(locals())
def __init__(self, pdf, x, q, pdgId, xfx, eq): assert xfx.ndim == 3 assert xfx.shape == (len(pdgId), ) + x.shape + q.shape xfx = np.ascontiguousarray(xfx) pin(locals())
def __init__(self, path, config=None): self.name = path.name config, skip = self._parse_config(path, config) assert config["Format"] == "lhagrid1" blocks = list(self._merge_blocks(self._parse_blocks(path, skip))) pin(locals())
def __init__(self, path, config=None): path = Path(path) assert path.is_dir() config = parse_config(path.joinpath("lhapdf.conf"), config) pin(locals())
def __init__(self, address, **kwargs): if isinstance(address, BaseServer): self.server = address address = address.address pin(locals())