Example #1
0
                        default='none',
                        type=str,
                        dest='test.out_dir',
                        help='The test out directory of images.')

    # ***********  Params for env.  **********
    parser.add_argument('--seed', default=None, type=int, help='manual seed')
    parser.add_argument('--cudnn',
                        type=str2bool,
                        nargs='?',
                        default=True,
                        help='Use CUDNN.')
    parser.add_argument("--local_rank", default=0, type=int)

    args = parser.parse_args()
    configer = Configer(args_parser=args)

    if args.seed is not None:
        random.seed(args.seed + args.local_rank)
        torch.manual_seed(args.seed + args.local_rank)

    cudnn.enabled = True
    cudnn.benchmark = args.cudnn

    abs_data_dir = os.path.expanduser(configer.get('data', 'data_dir'))
    configer.update('data.data_dir', abs_data_dir)

    if configer.get('gpu') is not None and not configer.get(
            'network.distributed', default=False):
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
            str(gpu_id) for gpu_id in configer.get('gpu'))
                    fontScale=0.5,
                    color=self.configer.get(
                        'details', 'color_list')[label_id % color_num],
                    thickness=2)

        return image_canvas


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--hypes_file',
                        default=None,
                        type=str,
                        dest='hypes_file',
                        help='The file of the hyper parameters.')
    parser.add_argument('--data_dir',
                        default=None,
                        type=str,
                        dest='data_dir',
                        help='The data dir of Det Parser.')
    parser.add_argument('--json_file',
                        default=None,
                        type=str,
                        dest='json_file',
                        help='The json file of Det Parser.')

    args_parser = parser.parse_args()

    det_parser = ClsParser(Configer(hypes_file=args_parser.hypes_file))
    det_parser.parse_dir_cls(args_parser.data_dir, args_parser.json_file)
Example #3
0
            prec = -1.
            ap = -1.

        return rec, prec, ap


if __name__ == "__main__":
    # Example:
    # python coco_evaluator.py --config_file ../../../../configs/pose/coco/openpose_vgg19_coco_pose.conf
    #                          --json_dir ../../../results/pose/coco/test_dir/coco/json/
    #                          --gt_dir /home/donny/DataSet/MSCOCO/annotations/person_keypoints_val2017.json
    parser = argparse.ArgumentParser()
    parser.add_argument('--config_file', default='../../../configs/det/voc/ssd300_vgg16_voc_det.conf', type=str,
                        dest='config_file', help='The configs file of pose.')
    parser.add_argument('--gt_dir', default='/home/donny/DataSet/VOC/VOCdevkit/VOC2007', type=str,
                        dest='gt_dir', help='The groundtruth annotations file of voc dets.')
    parser.add_argument('--json_dir', default='../../../val/results/det/voc/test_dir/image/json', type=str,
                        dest='json_dir', help='The json dir of predict annotations.')
    parser.add_argument('--dataset', default='VOC2007', type=str,
                        dest='dataset', help='The target dataset.')
    args = parser.parse_args()

    coco_evaluator = VOCEvaluator(Configer(hypes_file=args.hypes_file))
    if args.gt_dir is not None:
        pred_dir = coco_evaluator.relabel(args.json_dir)
        coco_evaluator.evaluate(pred_dir, args.gt_dir, use_07=(args.dataset == 'VOC2007'))

    else:
        submission_dir = coco_evaluator.relabel(args.json_dir)
        Log.info('Submisson file path: {}'.format(submission_dir))
Example #4
0
                          (int(object['bbox'][0]), int(object['bbox'][1])),
                          (int(object['bbox'][2]), int(object['bbox'][3])),
                          color=self.configer.get('details', 'color_list')[object['label'] % color_num], thickness=3)

            cv2.putText(image_canvas, class_name,
                        (int(object['bbox'][0]) + 5, int(object['bbox'][3]) - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5,
                        color=self.configer.get('details', 'color_list')[object['label'] % color_num], thickness=2)

        return image_canvas


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--config_file', default='../../configs/det/coco/yolov3_darknet_coco_det.conf', type=str,
                        dest='config_file', help='The file of the hyper parameters.')
    parser.add_argument('--image_file', default=None, type=str,
                        dest='image_file', help='The image file of Det Parser.')
    parser.add_argument('--json_file', default=None, type=str,
                        dest='json_file', help='The json file of Det Parser.')
    parser.add_argument('--image_dir', default='/home/donny/DataSets/Pallet/train/image', type=str,
                        dest='image_dir', help='The image directory of Det Parser.')
    parser.add_argument('--json_dir', default='/home/donny/DataSets/Pallet/train/json', type=str,
                        dest='json_dir', help='The json directory of Det Parser.')

    args_parser = parser.parse_args()

    det_parser = DetParser(Configer(config_file=args_parser.config_file))
    det_parser.parse_img_det(args_parser.image_file, args_parser.json_file)
    det_parser.parse_dir_det(args_parser.image_dir, args_parser.json_dir)
                        default='../../configs/seg/coco/mr_fpn_coco_seg.conf',
                        type=str,
                        dest='config_file',
                        help='The file of the hyper parameters.')
    parser.add_argument('--image_file',
                        default=None,
                        type=str,
                        dest='image_file',
                        help='The image file of Ins Parser.')
    parser.add_argument('--json_file',
                        default=None,
                        type=str,
                        dest='json_file',
                        help='The json file of Det Parser.')
    parser.add_argument('--image_dir',
                        default='/home/donny/DataSet/COCO_INS/train/image',
                        type=str,
                        dest='image_dir',
                        help='The image directory of Ins Parser.')
    parser.add_argument('--json_dir',
                        default='/home/donny/DataSet/COCO_INS/train/json',
                        type=str,
                        dest='json_dir',
                        help='The json directory of Ins Parser.')

    args_parser = parser.parse_args()

    ins_parser = InsParser(Configer(hypes_file=args_parser.hypes_file))
    ins_parser.parse_img_det(args_parser.image_file, args_parser.json_file)
    ins_parser.parse_dir_det(args_parser.image_dir, args_parser.json_dir)
Example #6
0
        dest='config_file',
        help='The configs file of pose.')
    parser.add_argument('--gt_dir',
                        default='/home/donny/DataSet/VOC/VOCdevkit/VOC2007',
                        type=str,
                        dest='gt_dir',
                        help='The groundtruth annotations file of voc dets.')
    parser.add_argument(
        '--json_dir',
        default='../../../val/results/det/voc/test_dir/image/json',
        type=str,
        dest='json_dir',
        help='The json dir of predict annotations.')
    parser.add_argument('--dataset',
                        default='VOC2007',
                        type=str,
                        dest='dataset',
                        help='The target dataset.')
    args = parser.parse_args()

    coco_evaluator = VOCEvaluator(Configer(config_file=args.config_file))
    if args.gt_dir is not None:
        pred_dir = coco_evaluator.relabel(args.json_dir)
        coco_evaluator.evaluate(pred_dir,
                                args.gt_dir,
                                use_07=(args.dataset == 'VOC2007'))

    else:
        submission_dir = coco_evaluator.relabel(args.json_dir)
        Log.info('Submisson file path: {}'.format(submission_dir))
                                           (int(length / 2),
                                            self.configer.get('res', 'vis_stick_width')), int(angle), 0, 360, 1)
                cv2.fillConvexPoly(cur_canvas, polygon, self.configer.get('details', 'color_list')[i])
                image_canvas = cv2.addWeighted(image_canvas, 0.4, cur_canvas, 0.6, 0)

        return image_canvas


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--hypes_file', default=None, type=str,
                        dest='hypes_file', help='The file of the hyper parameters.')
    parser.add_argument('--image_file', default=None, type=str,
                        dest='image_file', help='The image file of Pose Parser.')
    parser.add_argument('--json_file', default=None, type=str,
                        dest='json_file', help='The json file of Pose Parser.')
    parser.add_argument('--mask_file', default=None, type=str,
                        dest='mask_file', help='The mask file of Pose Parser.')
    parser.add_argument('--image_dir', default=None, type=str,
                        dest='image_dir', help='The image directory of Pose Parser.')
    parser.add_argument('--json_dir', default=None, type=str,
                        dest='json_dir', help='The json directory of Pose Parser.')
    parser.add_argument('--mask_dir', default=None, type=str,
                        dest='mask_dir', help='The mask directory of Pose Parser.')

    args_parser = parser.parse_args()

    pose_parser = PoseParser(Configer(hypes_file=args_parser.hypes_file))
    pose_parser.parse_img_pose(args_parser.image_file, args_parser.json_file, args_parser.mask_file)
    pose_parser.parse_dir_pose(args_parser.image_dir, args_parser.json_dir, args_parser.mask_dir)
Example #8
0
                                          gtmap[np.newaxis, :, :])
            img_cnt += 1

        Log.info('Evaluate {} images'.format(img_cnt))
        Log.info('mIOU: {}'.format(self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}'.format(
            self.seg_running_score.get_pixel_acc()))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--config_file',
                        default=None,
                        type=str,
                        dest='config_file',
                        help='The configs file of pose.')
    parser.add_argument('--gt_dir',
                        default=None,
                        type=str,
                        dest='gt_dir',
                        help='The groundtruth annotations.')
    parser.add_argument('--pred_dir',
                        default=None,
                        type=str,
                        dest='pred_dir',
                        help='The label dir of predict annotations.')
    args = parser.parse_args()

    ade20k_evaluator = ADE20KEvaluator(Configer(hypes_file=args.hypes_file))
    ade20k_evaluator.evaluate(args.pred_dir, args.gt_dir)
            img_cnt += 1

        Log.info('Evaluate {} images'.format(img_cnt))
        Log.info('Class mIOU: {}'.format(self.seg_running_score.get_cls_iou()))
        Log.info('mIOU: {}'.format(self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}'.format(
            self.seg_running_score.get_pixel_acc()))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--config_file',
                        default=None,
                        type=str,
                        dest='config_file',
                        help='The configs file of pose.')
    parser.add_argument('--gt_dir',
                        default=None,
                        type=str,
                        dest='gt_dir',
                        help='The groundtruth annotations.')
    parser.add_argument('--pred_dir',
                        default=None,
                        type=str,
                        dest='pred_dir',
                        help='The label dir of predict annotations.')
    args = parser.parse_args()

    seg_evaluator = SegEvaluator(Configer(config_file=args.config_file))
    seg_evaluator.evaluate(args.pred_dir, args.gt_dir)
                        default=None,
                        type=str,
                        dest='hypes_file',
                        help='The file of the hyper parameters.')
    parser.add_argument('--image_file',
                        default=None,
                        type=str,
                        dest='image_file',
                        help='The image file of Seg Parser.')
    parser.add_argument('--label_file',
                        default=None,
                        type=str,
                        dest='label_file',
                        help='The label file of Seg Parser.')
    parser.add_argument('--image_dir',
                        default=None,
                        type=str,
                        dest='image_dir',
                        help='The image directory of Seg Parser.')
    parser.add_argument('--label_dir',
                        default=None,
                        type=str,
                        dest='label_dir',
                        help='The label directory of Seg Parser.')

    args_parser = parser.parse_args()

    seg_parser = SegParser(Configer(hypes_file=args_parser.hypes_file))
    seg_parser.parse_img_seg(args_parser.image_file, args_parser.label_file)
    seg_parser.parse_dir_seg(args_parser.image_dir, args_parser.label_dir)